

Tailoring nanosized polymeric materials for some drug delivery

Thesis Submitted for Ph.D Degree in Chemistry

By

Rokaya Aly Aly Sobh (B. Sc. 2002, M. Sc. 2007)

Supervised By

Prof. Dr. Abd Elgawad Mohamed Rabie

Professor of Organic Chemistry Faculty of Science, Ain Shams University

Prof. Dr. Abdalla Bakr Moustafa

Professor of Polymers and Pigments Science Polymers and Pigments Department, National Research Center

Prof. Dr. Hanaa El-Sayed Nasr

Professor of Polymers and Pigments Science Polymers and Pigments Department, National Research Center

(2012)

Tailoring nanosized polymeric materials for some drug delivery

Thesis Submitted to Faculty of Science – Ain Shams University In partial fulfillment of the requirements of the Ph.D degree in Chemistry

> *By* **Rokaya Aly Aly Sobh** (B. Sc. 2002, M. Sc. 2007)

Under Supervision

Approved

Prof. Dr. Abd Elgawad Mohamed Rabie

Prof. of Organic Chemistry-Faculty of Science-Ain Shams University

Prof. Dr. Abdalla Bakr Moustafa

Prof. of Polymers and Pigments Science-Polymers and Pigments Dep.-NRC

Prof. Dr. Hanaa El-Sayed Nasr

Prof. of Polymers and Pigments Science-Polymers and Pigments Dep.-NRC

Head of Chemistry Department

Prof. Dr. Magid Shafik Antonious

Tailoring nanosized polymeric materials for some drug delivery

Thesis Submitted to Faculty of Science – Ain Shams University In partial fulfillment of the requirements of the Ph.D degree in Chemistry

By Rokaya Aly Aly Sobh (B. Sc. 2002, M. Sc. 2007) This Thesis for Ph.D Degree has been approved by

Prof. Dr. Abdel-Gawad Mohamed Rabie
Prof. of Organic ChemistryFaculty of Science-Ain Shams University
Prof. Dr. Abdalla Bakr Moustafa
Prof. of Polymers chemistry and TechnologyNational Research Center
Prof. Dr. El-Sayed Mohammed Abdel-Bary
Prof. of Polymers chemistry and Technology
Faculty of Science-Mansoura University
Prof. Dr. Mohammed Ali Zewail

Prof. of Amino Acids and Peptides chemistry -National Research Center

Examination Date

Head of Chemistry Department

Prof. Dr. Magid Shafik Antonious

Contents

Contents

Acknowledgement	Ι
List of abbreviation	III
Aim of work	IV
List of Tables	VI
List of Figures	VIII
Summery	XIX
Chapter I: Introduction & Literature Review	1
1.1. Nanotechnology	1
1.2. Methods of preparation of nanoparticles	2
1.2.1. Dispersion of the preformed polymers (Physical	
methods)	3
1.2.1.1. Emulsion solvent evaporation method	3
1.2.1.2. Spontaneous emulsification /solvent diffusion	
method (or, salting-out method)	4
1.2.1.3. Dialysis	5
1.2.1.4. Production of NPs using supercritical fluid	
technology	6
1.2.1.4.1. The supercritical antisolvent SAS method	7
1.2.1.4.2. The rapid expansion of supercritical solution	
(RESS)	9

page

1.2.1.4.3. The rapid expansion of supercritical solution	
into a liquid solvent method (RESOLV)	10
1.2.2. Polymerization of monomers	12
1.2.2.1. Emulsion polymerization	12
1.2.2.2. Miniemulsion polymerization method	14
1.2.2.3. Microemulsion polymerization method	16
1.2.2.3.1. Mechanism of Microemulsion Polymerization.	18
1.2.2.3.2. Mechanism of microemulsion compared to	
miniemulsion and emulsion polymerizations	19
1.2.2.3.3. Size Control of Nanolatexes Produced in Oil-	
in-Water Globular Microemulsions	24
1.2.2.3.4. Efforts to obtain nanosized latexes containing	
higher polymer contents at lower surfactant	
concentration	26
1.3. Drug Delivery	37
1.3.1. Drug delivery in nanoparticles NPs	41
1.3.2. Methods of loading drug in a polymeric	
nanoparticles system	46
1.3.2.1. Adsorption method	52
1.3.2.2. Incorporation method	54
1.3.2.2.1. Physical methods	55
1.3.3.2.2. Polymerization methods	58

	Page
1.3.3. Microemulsions and their prospective uses in drug	
delivery	60
1.3.4.Poly (vinyl pyrrolidone) PVP as a biocompatible	
emulsifier	69
1.2.5. Examples of Drugs loaded in polymeric system	71
1.2.5.1. Water soluble drugs	71
1.2.5.2. Hydrophobic drugs	73
Chapter II: Experimental	
2.1. Chemicals	80
2.1.1. Monomers	80
2.1.2. Emulsifiers	80
3. Solvents	80
4. Drugs	80
2.1.5. Other materials	81
2.2. Polymerization processes	81
2.2.1. Batch polymerization	81
2.2.2. Differential microemulsion polymerization	83
2.3. Entrapment of the drug through differential	0.6
microemulsion polymerization	80
2.3.1. Loading of sodium warfarin through differential	96
microemulsion polymerization	80
2.3.2. Loading of lipophilic drugs through differential	96
microemulsion polymerization	00

	1
2.3.3. Determination of drug content in polymeric	
assemblies	87
2.4. In vitro drug release studies	88
Characterization	89
2.5.1.The critical micelle concentration determination	89
2.5.2. Kinetic Studies	90
3. Solid content and Conversion measurement	91
4. Molecular weight measurement	92
2.5.5. Surface Tension measurement	92
2.5.6. Morphology and Particle size determination	93
2.5.7. Turbidity measurement	93
2.5.8. Zeta potential measurement	94
2.5.9. UV spectrophotometer	95
2.5.10. FTIR spectroscopy	95
2.5.11. Differential scanning calorimeteric (DSC)	95
2.5.12. Statistical analysis	95
Chapter III: Results and Discussion	
3.1. The critical micelle concentration CMC	
determination of the emulsifiers SDS, PVP, SA	98
3.2. Kinetic Studies for batch copolymerization of	
MMA and HEMA	102
3.2.1. Effect of emulsifier concentration on the rate of	
polymerization	105

3.2.2. Effect of emulsifier concentration on the particle	
size and morphology of the produced copolymer	114
3.3. Differential microemulsion polymerization	118
3.3.1. The effect of solid content on the particle size	120
3.3.2. Copolymerization of MMA and HEMA using	
various emulsifiers	122
3.3.3. Effect of HEMA content on the colloidal	
properties	125
3.3.3.1. Molecular weight and conversion	
determination	126
3.3.3.2. Surface Tension measurement	130
3.3.3.3. Particle size measurements	136
3.3.3.4. Turbidity measurement	148
3.3.3.5. Zeta potential measurement	152
3.3.3.6 Differential scanning calorimeteric (DSC)	155
3.4. Drug Delivery	159
3 1 1 Entranment of the drug through polymeric	
nanospheres	
nanospireres	160
 2 4 1 1 Entre annu de Chelen ani 1-1	
3.4.1.1. Entrapment of naloperidol	162
3.4.1.2. Entrapment of warfarin sodium, ibuprofen	164

Page

and praziquantel.....

	Page
3.4.1.3. Yield, drug loading and entrapment	
efficiency	165
3.4.1.3.1. Influence of drug type on the EE	170
3.4.1.3.2. Influence of drug content on the EE	172
3.4.1.3.3. Influence of HEMA content on the EE	172
3.4.2. Instrumental analysis for drug-loaded polymer	173
3.4.2.1. FTIR spectroscopy	173
3.4.2.1.1. FTIR spectroscopy for free copolymeric	
nanospheres	174
3.4.2.1.2. FTIR spectroscopy for warfarin sodium-	
loaded copolymeric nanospheres	176
3.4.2.1.3. FTIR spectroscopy for ibuprofen-loaded	
copolymeric nanospheres	180
3.4.2.1.4. FTIR spectroscopy for praziquantel-loaded	
copolymeric nanospheres	183
3.4.2.3. Morphology analysis	187
3.4.2.4. Differential scanning calorimetric	191
3.4.3. In vitro drug release	195
3.4.3.1. Effect of HEMA content	198
3.4.3.1.1. In vitro Sodium warfarin release	198
3.4.3.1.2. In vitro Ibuprofen release	202

3.4.3.1.3. In vitro Praziquantel release	203
3.4.3.2. Effect of pH of the dissolution media	207
	Page
3.4.3.2.1. The release of sodium warfarin	207
3.4.3.2.2. The release of ibuprofen	210
3.4.3.2.3. The release of praziquantel	212
3.4.3.3. Effect of drug content on drug release	214
References	220
Arabic summary	

Acknowledgement Thanks God

First I would like to express my grateful thanks to **Prof. Dr. Abd El-Gawad Mohammed Rabie** Professor in the Chemistry department, Faculty of Science Ain Shams University, for his considerable discussions and guidance.

I would like to express my grateful appreciation to my supervisor *Prof. Dr. Abdalla Bakr Moustafa*, Professor in the polymers and pigments department, National Research Center, who served as my course advisor for his constructive comments valuable suggestions, continuous encouragement and support.

Also, I want to thank *Prof. Dr. Magdy M. H. Ayoub* Professor in the polymers and pigments department, National Research Center, for his terrific suggestions and provided guidance.

It is of great pleasure to express my deep gratitude, acknowledge and indebtedness to *prof. Dr. Hanaa El-Sayed Nasr*, Professor in the polymers and pigments department, National Research Center, for suggesting this research point, valuable contribution, help and encouragement. Also, I would like to express my grateful thanks to *Prof. Dr. Samaha Sayed Hussein*, Head of Chemical Metrology Division, National Institute for Standards for his fruitful help and cooperation and everyone in the Textile Metrology Lab.

My gratitude is extended to my colleagues and friends inside the polymers& pigments department and outside in the national research centre and to all my friends for their help and cooperation.

It is of great pleasure to express my deep gratitude for my family, my parents, my husband, son and daughter. Without their love, help, patience and continuous encouragement through the hard times, this work would not have been possible.

R. A. A. Sobh

List of Abbreviations

Meaning
Methyl methacrylate
2-hydroxyethyl methacrylate
Sodium dodecyl sulfate
Ammonium persulfate
Sodium alginate
Polyvinyl pyrrolidone
Polyethyleneglycol
Supercritical antisolvent method
Rapid expansion of supercritical solution
Rapid expansion of supercritical solution
into a liquid solvent method Critical micelle concentration
Rate of polymerization
Gel permeation chromatography
Differential scanning calorimetry
Glass transition temperature
Entrapment efficiency
Praziquantel
Poly(ɛ-caprolactone)
Transmission electronic microscopy
Emulsion solvent evaporation
non-steroidal anti-inflammatory drugs
Food and Drug Administration

Aim of the work

The work in this thesis is aimed to study the feasibility of synthesis of polymeric nanoparticles in thermodynamically stable and transparent latex through differential microemulsion polymerization technique. This technique is characterized by spontaneous formation, ease of manufacture, tolerance towards additives, stability over a wide temperature range, low viscosity and improved solubilization of bioactive materials. In addition to, the ability of increasing the solid content while using least amount of emulsifier.

So, it is aiming to study the polymerization of methyl 2-hydroxyethyl methacrylate methacrylate MMA and HEMA to produce their copolymer nanoparticles (less than biocompatible polymer 100nm) as using different emulsifiers such as sodium dodecyl sulfate SDS and sodium alginate SA biocompatible emulsifier as and polyvinyl pyrrolidone PVP alone or combined with polyethylene glycol PEG.

As well as, finding out the effect of HEMA content in the monomer feed composition on the prepared polymeric nanolatexes in terms of morphology, average particle size, surface tension, turbidity and zeta potential measurements,