EXTRACTION OF SOME ECONOMIC ELEMENTS FROM SEDIMENTS, SOUTH SINAI USING PHYTO AND BIOMINING

Submitted By

Naglaa Abd El Kader Ali El-Said B.Sc. of Agriculture, Faculty of Agriculture, Ain Shams University, 1997 Diploma of Environmental Sciences, Institute of Environmental Studies & Research, Ain Shams University, 2006

> A thesis submitted in Partial Fulfillment Of The Requirement for the Master Degree In Environmental Science

Department of Environmental Agricultural Science Institute of Environmental Studies and Research Ain Shams University

2012

APPROVAL SHEET

EXTRACTION OF SOME ECONOMIC ELEMENTS FROM SEDIMENTS, SOUTH SINAI USING PHYTO AND BIOMINING

Submitted By

Naglaa Abd El Kader Ali El-Said

B.Sc. of Agriculture, Faculty of Agriculture, Ain Shams University, 1997 Diploma of Environmental Sciences, Institute of Environmental Studies & Research, Ain Shams University, 2006

This thesis Towards a Master Degree in Environmental Science Has been Approved by:

Name

Signature

1- Prof. Dr. Mohamed El-Sayed El Nannah Prof. of Soil & Water Environment Faculty of Agriculture Ain Shams University

2- Prof. Dr. Nagah El-Shahat Ali El-Said

Emeritus Prof. of Biochemistry Faculty of Agriculture Ain Shams University

- **3- Prof. Dr. Hesham Ibrahim El-Kassas** Prof. of Soil & Water Environment & Vice Dean of Institute of Environemntal Studies & Research Ain Shams University
- **4- Prof. Dr. Farouk Guindi Moawad** Emeritus Prof. of Biochemistry Faculty of Agriculture Ain Shams University

5- Prof. Dr. Hammed Ibrahim El-Said Mira

Prof. of GeoChimestry Nuclear Materials Authority

EXTRACTION OF SOME ECONOMIC ELEMENTS FROM SEDIMENTS, SOUTH SINAI USING PHYTO AND BIOMINING

Submitted By

Naglaa Abd El Kader Ali El-Said

B.Sc. of Agriculture, Faculty of Agriculture, Ain Shams University, 1997 Diploma of Environmental Sciences, Institute of Environmental Studies & Research, Ain Shams University, 2006

> A thesis submitted in Partial Fulfillment Of The Requirement for the Master Degree In Environmental Science

Department of Environmental Agricultural Science

Under The Supervision of:

- 1- Prof. Dr. Hesham Ibrahim El-Kassas Prof. of Soil & Water Environment & Vice Dean of Institute of Environemntal Studies & Research Ain Shams University
- 2- Prof. Dr. Farouk Guindi Moawad Emeritus Prof. of Biochemistry Faculty of Agriculture Ain Shams University

3- Prof. Dr. Hammed Ibrahim Mira Prof. of GeoChimestry Nuclear Materials Authority

2012

ACKNOWLEDGEMENT

First of all, praise to Allah, Lord of the entire worlds ,by whose grace this work has been completed .

I wish to express my deepest appreciations and much gratitude is offered to *Prof.Dr. Hesham El Kassas*, Professor of soil and water Environment, Vice Dean for Postgraduate studies and Research, Institute of and Research, Ain Shams University, for close fairly supervision, guidance and continuous encouragement.

Many thanks and grateful to *Prof.Dr.Farouk* Professor Of Biochemistry Agricultural- Ain Shams University, for his supervision, stimulating guidance, suggesting the problem and reading manuscript.

Really want to express my deep thanks to *Prof.Dr. Hamed Ibrahim Mira*, Nuclear Materials Authority for his fairly supervision, valuable suggestions during all steps of this work. Also, special thanks for his excellent efforts in revising and finishing the work.

Deep gratitude and thanks are recorded especially to *Prof.Dr.Mohamed El.Ahmady Head of Research Sector*, Nuclear Materials Authority for collecting the samples, valuable suggestions and offering the facilities during all step of the work.

Special thanks are offered to *Prof.Dr.Tarek Amer, Head of Pilot Experimental Department* (Nuclear Materials Authority) for encouragement, and offering the facilities during all step of the work.

The author is greatly indebted to Prof.Dr. Omenia El Hosseni, (Nuclear Materials Authority), for her continuous encouragement during this work.

My cordial thanks are recorded to *Dr. Maisa Amin* Lecture of microbiology, Nuclear Materials Authority ,*Dr. Galal Dabbour* Lecture of chemistry, Nuclear Materials Authority , *Dr. Nasr Abd El Aziz Abd El Fatah* Assistant prf in physical chemistry, *Dr. Ahmed Rabiea Bakry* Lecture of chemistry Nuclear Materials Authority for valuable advice during the experimental work, *Dr .Noha Mohammed Kamal*, *demonstrator at botany department, Faculty of Women,Ain Shams University.and Dr.Magdy Mohamed Niazy*.

I express my deep thanks to my family especially *My Mother*, *My Father* and *My Brothers* for the continuous encouragement and advice with the help during my life.

Naglaa Abd El Kader Ali El Said

ABSTRACT

Um Bogma area, southwestern Sinai, was considered as one of the most polluted area in Egypt, where its deposits and soil are highly enriched in metals, especially Pb, Zn, Cd, Cu, Co, REEs and U. Due to the environmental implications and the economic importance of most of them, the remediation of soil, extraction of these metals and recovery of some metals are the main target. So, the present work highlights this area through two low cost techniques, namely; Phytomining and biomining. Sunflower and kenaf are the selected hyperaccumulator plants, while the isolated Aspergillus niger and Aspergillus flavus fungi species and Bacillus subtills bacteria species are the organisms used in this study. From the phyto-treatments and their statistical analysis, it can be found that the decrease in dry weight of the two plants grown in Um Bogma soil may be due to adverse effect of metals that involve actions on several metabolic processes in the plant. The fresh weight of roots stems and leaves of plant at different time with addition of EDTA were less than control plant (untreated plants). EDTA is a well chelating agent increases the activity of the metals in the soil solution, and then enhanced the metal bioavailability and subsequent uptake and translocation in organs of sunflower and kenaf plants. These hyperaccumulators were characterized by low biomass and slow rate of growth. The recorded fungi species show higher bioleaching and biosorption capacities than that recorded by bacteria.

The bioleaching and biosorption processes of U, heavy metals and REEs from Um Bogma ore material were carried out using both *Aspergillus niger* and *Aspergillus flavus* fungi and Bacillus subtills bacteria species that isolated from the sample ore under investigation. The effective bioleaching of these metals occurred at incubation time of 4 days, solid/liquid (S/L) ratio of 1/5 and temperature of (60°C). The maximum biosorption capacities of metals occurred at ore concentration 4% pH 6, 3days culture age respectively Environmental Scan Electron Microscope (ESEM) shows high accumulation of U and REEs (Ce, Nd and La) on cell wall surface of *Aspergillus niger* and *Aspergillus flavus*. Also, the chemical analysis of these accumulated ions revealed that, *A.flavus* has relative high biosorption capacity for uranium and REEs.

The recorded gram positive oxidizing bacteria (*Bacillus subtills*) as well as the oxidizing *Aspergillus niger* and *Aspergillus flavus* are known for their ability to form a broad spectrum of organic acids such as oxalic acid, acetic acid, desferrioxamine siderophore and non-acidic biomolecules mainly phosphatase enzyme. Under these

acidic conditions and the microbial activity, the primary minerals from the soil would dissolve releasing these chemical elements. These microorganisms are capable to removing the radioactive elements and heavy metals from the studied soil by the physico-chemical interactions during the adsorption processes depending upon cell metabolism.

Key Words: Um Bogma area- -Bioremediation- phytotechnology Phytoremediation-Hyperaccumulator plants-Snflower-Kenaf – Chleating agents –Bioleaching-A.niger-Aflavus. -Biosorption

Contents

1

2

		Page
ITRODUCTION		5
REVIEW	I	10
2.1.	HEAVY METALS	10
2.1.1.	Heavy metals and air pollution	10
2.1.2.	Heavy metals and water pollution	10
2.1.3.	Heavy metal contamination in soils and food crops	11
2.1.4.	Role of Some Elements in Plant	12
2.1.5.	Toxicity	16
2.2.	Defense Mechanisms against Metal Phytotoxicity	16
2.3.	Phytoremediation of Polluted Soil with Heavy Metals	17
2.3.1.	Categories of phytoremedition	18
	(a) phytoextraction	19
	(b) Phytofiltration	19
	(c) Phytostabilization	19
	(d) Phytovolatilization	19
	(e) Phytodegredation means	19
2.3.2.	Hyperaccumulators plants	20
2.3.3.	Enhance of hyperaccumulation by chleating agents	21
2.4.	Microbiological studies	23
2.4.1.	Bioleaching using Bacteria and Fungi	23
2.4.1.1.	Bioleaching of heavy metals	23
2.4.1.2.	Bioleaching of Uranium	24

	2.4.1.3. Bioleaching of REEs	25
	2.4.2. Biosorption	25
	2.4.2.1. Biosorption of heavy metals	25
	2.4.2.2. Biosorption of Uranium	26
	2.4.2.3. Biosorption of Rare earth Elements (REEs)	27
3 -MATERIA	LS AND METHODS	29
3.1.	General Geology of Um –Bogma area	29
3.2.	Sampling	29
3.3.	Mechanical and physical characters	30
3.4.	Mineralogical Investigation	31
3.5.	Chemical Analysis	31
3.5.1.	Uranium Determination	32
3.5.2.	REEs Determination	33
3.6.	Plant Experiments	34
3.7.	The statistical analysis	34
3.8.	Microbiological Treatments	34
3.8.1	Microbial growth media	35
3.8.2.	-Microbial Isolation	35
3.8.3.	Purification and identification	35
3.5.4.	Bioleaching experiments	35
3.5.4.1.	Bioleaching experiment by bacteria	36
3.5.4.2.	Optimization of bioleaching parameters of uranium and REEs by fungi	36
2.	Effect of Solid /Liquid (S/L) ratio	36
3.	Effect of temperature	37
4.	Effect of optimum conditions on the solubilization of uranium,	
	REEs and other heavy metals solubilization	37
3.5.5.	Biosorption experiments	38

3.5.5.1.	-Factors influencing biosorption of uranium and REEs by tested	38
	fungi	20
1.	Effect of different ore concentration on biosorption of uranium	
	and REEs by A.niger and A.flavus cultivated on Dox liquid	38
	medium at 30°C for 7 days	
2.	Effect of different pHs on the biosorption of uranium and REEs	39
	by fungal biomass	57
3.	Effect of culture age on uranium and REEs biosorption	39
4.	Effect of optimum conditions on the biosorption of uranium,	39
	REEs and heavy metals by tested fungi	39
3.5.5.2.	Biosorption of uranium, REEs and heavy metals by	39
	Bacteria	39
4-RESULTS	AND DISSECTION	41
4.1.	Sedimentological and Mineralogical Examination	41
4.2.	Chemical Composition of the Studied Sample	41
4.3.	Phytomining	42
	4.3.1- Effect of Metals	44
1.	4.3.1- Effect of Metals Effect of U and heavy metals and EDTA treatment on mean fresh	
	Effect of U and heavy metals and EDTA treatment on mean fresh	44
1.	Effect of U and heavy metals and EDTA treatment on mean fresh weight of sunflower (<i>Helianthus annus</i>) grown in Um-bogma)	44
1.	Effect of U and heavy metals and EDTA treatment on mean fresh weight of sunflower (<i>Helianthus annus</i>) grown in Um-bogma) soil at different periods of time	44 46
1.	Effect of U and heavy metals and EDTA treatment on mean fresh weight of sunflower (<i>Helianthus annus</i>) grown in Um-bogma) soil at different periods of time Effect of U and heavy metals and EDTA treatment on mean dry	44
1.	Effect of U and heavy metals and EDTA treatment on mean fresh weight of sunflower (<i>Helianthus annus</i>) grown in Um-bogma) soil at different periods of time Effect of U and heavy metals and EDTA treatment on mean dry weight of sunflower growing in (Um-bogma) soil at different	44 46
1. 2.	Effect of U and heavy metals and EDTA treatment on mean fresh weight of sunflower (<i>Helianthus annus</i>) grown in Um-bogma) soil at different periods of time Effect of U and heavy metals and EDTA treatment on mean dry weight of sunflower growing in (Um-bogma) soil at different periods of time	44 46
1. 2.	Effect of U and heavy metals and EDTA treatment on mean fresh weight of sunflower (<i>Helianthus annus</i>) grown in Um-bogma) soil at different periods of time Effect of U and heavy metals and EDTA treatment on mean dry weight of sunflower growing in (Um-bogma) soil at different periods of time Effect of U and heavy metals and EDTA treament on mean fresh	44 46 48
1. 2.	Effect of U and heavy metals and EDTA treatment on mean fresh weight of sunflower (<i>Helianthus annus</i>) grown in Um-bogma) soil at different periods of time Effect of U and heavy metals and EDTA treatment on mean dry weight of sunflower growing in (Um-bogma) soil at different periods of time Effect of U and heavy metals and EDTA treament on mean fresh weight of kenaf (<i>Hibscus cannbinus</i>) grown in (Um-bogma) soil	44 46 48
1. 2. 3.	Effect of U and heavy metals and EDTA treatment on mean fresh weight of sunflower (<i>Helianthus annus</i>) grown in Um-bogma) soil at different periods of time Effect of U and heavy metals and EDTA treatment on mean dry weight of sunflower growing in (Um-bogma) soil at different periods of time Effect of U and heavy metals and EDTA treament on mean fresh weight of kenaf (<i>Hibscus cannbinus</i>) grown in (Um-bogma) soil at different periods of time	44 46 48
1. 2. 3.	Effect of U and heavy metals and EDTA treatment on mean fresh weight of sunflower (<i>Helianthus annus</i>) grown in Um-bogma) soil at different periods of time Effect of U and heavy metals and EDTA treatment on mean dry weight of sunflower growing in (Um-bogma) soil at different periods of time Effect of U and heavy metals and EDTA treament on mean fresh weight of kenaf (<i>Hibscus cannbinus</i>) grown in (Um-bogma) soil at different periods of time Effect of U and heavy metals and EDTA treatment on mean dry	44 46 48 49
1. 2. 3.	Effect of U and heavy metals and EDTA treatment on mean fresh weight of sunflower (<i>Helianthus annus</i>) grown in Um-bogma) soil at different periods of time Effect of U and heavy metals and EDTA treatment on mean dry weight of sunflower growing in (Um-bogma) soil at different periods of time Effect of U and heavy metals and EDTA treatment on mean fresh weight of kenaf (<i>Hibscus cannbinus</i>) grown in (Um-bogma) soil at different periods of time Effect of U and heavy metals and EDTA treatment on mean dry weight of kenaf (<i>Hibscus cannbinus</i>) grown in Um-Bogma soil at	44 46 48 49
1. 2. 3. 4.	Effect of U and heavy metals and EDTA treatment on mean fresh weight of sunflower (<i>Helianthus annus</i>) grown in Um-bogma) soil at different periods of time Effect of U and heavy metals and EDTA treatment on mean dry weight of sunflower growing in (Um-bogma) soil at different periods of time Effect of U and heavy metals and EDTA treament on mean fresh weight of kenaf (<i>Hibscus cannbinus</i>) grown in (Um-bogma) soil at different periods of time Effect of U and heavy metals and EDTA treatment on mean dry weight of kenaf (<i>Hibscus cannbinus</i>) grown in Um-Bogma soil at different periods of time	44 46 48 49 49

.....

2.	The statistical analysis of the obtained data about the	
	concentration of metals in three parts of sunflower	62
	plant	
3.	Concentration of U, heavy metals and REEs ($\mu g/g dry weight$)	
	with and without addition of EDTA in root, stem and leaves of	66
4	kenaf plant at different periodic time.	
4.	·	73
1 2 2	concentration of metals in three parts of Kenaf plant Metals Uptake	77
4.3.3.		77
1.	Uptake of U, heavy metals and REEs by sunflower at different periodic time (20, 40 and 60 days)	77
2.	The statistical analysis of the uptake data of metals though three	84
	parts of sunflower plant	04
3.	Uptake of U and heavy metals by kenaf at different periodic time	88
	(20, 40 and 60 days)	00
4.	The statistical analysis of the uptake data of metals thought three	94
	different parts of Kenaf plant	2.
4.3.4.	Residual amounts of metals	98
1.	Residual of total amount of heavy metals from soil at different	98
	periods of time (by sunflower plant)	90
2.	Determination of extractable heavy metal ions	99
3.	Residual amounts of heavy metals from soil before and after cultivation Kenaf at different periods of time	103
4.4.	Microbial Studies	106
4.4.1.	Microbial Identification	106
4.4.2.	Bacterial bioleaching of U, REEs and some heavy metals	107
4.4.3.	Optimization of bioleaching parameters with Fungi.	107
1	. Effect of the incubation period	107
2.	Effect of Solid / Liquid (S/L) ratio.	108

3.	Effect of temperature	109
4.	Effect of optimum conditions on the solubilization of U, REEs	
	and other heavy metals by tested fungi	110
4.4.4.	Recovery of U and REEs as well as some heavy metals	111
1.	Separation of some heavy metals	111
2.	Separation of REEs	112
3.	Separation of U	112
	Optimization of Biosorption Parameters by Fungi	115
1	Effect of different ore concentrations on uranium and REEs	
	biosorption by1 gram of <i>A. niger</i> and <i>A.flavus</i> biomass Effect of different initial pH on the biosorption of uranium and	115
2.		115
2.		110
3	Effect of culture age on uranium and REEs biosorption	116
4.	Effect of optimum conditions on uranium and REE biosorption	117
4.4.5 .	Bacterial Bio-sorption	121
4.4.6.	Mechanism of Bio-dissolution and Bio-sorption of Metals	123
5-	Summary	126
6-	REFFERENCES	130

LIST OF TABALES

TABA	ALE NO	Page
1	Mechanical and physical properties of soil	40
2	Chemical composition of the studied soil sample	41
3	Chemical analysis of water used for irrigation	41
4	Effect of U and heavy metals and EDTA treatment on mean fresh weight of sunflower (<i>Helianthus annus</i>) grown in (Um-bogma) soil at different periods of time	44
5	Effect of heavy metals and EDTA treatment on mean dry weight of sunflower (<i>Helianthus annus</i>) grown in (Um-bogma) soil in different periods of time	47
6	Effect of U and heavy metals with or without addition of EDTA in irrigation water on mean fresh weight of Kenaf (<i>Hibscus cannbinus</i>) at different periods of time	50
7	Effect of U and heavy metals on mean dry weight of Kenaf (<i>Hibscus cannbinus</i>) at different periods of time	53
8	Concentrations of U, heavy metals and REEs (mg/kg dry weight in roots, stems and leaves of sunflower plant	58
9	The statistical analysis of U and heavy metals concentration data in Sunflower roots	63
10	The statistical analysis of U and heavy metals concentration data in Sunflower stems	64
11	The statistical analysis of U and heavy metals concentration data in Sunflower leaves	65

12	Concentrations of U, heavy metals and REEs (μ g/g dry weight) with or	69
	without EDTA addition in roots, stems and leaves of kenaf	
	plant	
13	The statistical analysis of U and heavy metals concentration data in Kenaf	74
	roots	
14	The statistical analysis of U and heavy metals concentration data in Kenaf	75
	stems	
16	Uptake of U, heavy metals and REEs by different parts of sunflower	80
	plant	
17	The statistical analysis of the elements uptake data by sunflower	85
	root	
18	The statistical analysis of the elements uptake data by sunflower	86
	stem	
19	The statistical analysis of the elements uptake data by sunflower	87
	leaves	
20	Uptake of U, heavy metals and REEs by kenaf	90
21	The statistical analysis of the elements uptake data by Kenaf	95
	roots	
22	The statistical analysis of the elements uptake data by Kenaf	96
	stems	
23	The statistical analysis of the elements uptake data by Kenaf	97
	leaves	
		101
24	a-Residual of total amounts of Zn, Cu,Pb from soil before and after	
	cultivation sunflower plant at different period of time	
	b-Residual of total amounts of Co,Cd,U from soil before and after	102
	cultivation sunflower plant at different period of time	
25	Residual of total amounts of metals from soil before and after cultivation	104
	Kenaf plant at 20 days	
26	Residual of total amounts of metals from soil before and after cultivation	105
	Kenaf plant at 40 days	
27	Residual of total amounts of metals from soil before and after cultivation	105
	Kenaf plant at 60 days	

28	Bacterial leaching of U, REEs and some heavy metal Element	107
29	Effect of incubation period on leaching efficiency of U and REEs	108
30	Effect of S/L ratio upon U and REEs leaching efficiency	109
31	Effect of temperature upon U and REEs leaching efficiencies	110
32	Chemical analysis of the produced bioleach liquors using both of A.niger	111
	and A.flvaus	
33	Effect of different ore concentrations on uranium and REEs	116
	biosorption of 1 g of A. niger and A.flavus biomass	
34	Effect of different initial pH on uranium and REEs biosorption of	117
	1 g of A. niger and A. flavus biomass	
35	Effect of different culture age on the biosorption of uranium and	117
	REEs by fungal biomasses	

36 Chemical analysis of the adsorbed ions by isolated fungi...... 119

LIST OF FIGURES

FIGURES NO.		Page
1	Map of area	29
2	Fresh weight of sunflower roots with and without addition of EDTA	45
3	Fresh weight of sunflower stems with and without addition of EDTA	45
4	Fresh weight of sunflower leaves with and without addition of EDTA	45
5	Dry weight of sunflower roots with and without addition of EDTA	48
6	Dry weight of sunflower stems with and without addition of EDTA	48
7	Dry weight of sunflower leaves with and without addition of EDTA	48
8	Fresh weight of Kenaf roots with and without addition of EDTA	51
9	Fresh weight of Kenaf stems with and without addition of EDTA	51
10	Fresh weight of Kenaf leaves with and without addition of EDTA	51
11	Dry weight of Kenaf roots with and without addition of EDTA	54
12	Dry weight of Kenaf stems with and without addition of EDTA	54
13	Dry weight of Kenaf leaves with and without addition of EDTA	54
	showing the relationship between concentration of metals (Zn, Cd)	
14	and periodic time in different parts of sunflower plant with and	59
	without addition EDTA	
	Showing the relationship between concentration of metals (Cu,	
15	Co) and periodic time in different parts of sunflower plant with	63
	and without addition EDTA	05
	showing the relationship between concentration of metals (U,Pb)	
16	and periodic time in different parts of sunflower plant with and	61
	without addition EDTA	01