Obesity and Metabolic Syndrome among Egyptian Adolescents

Thesis Submitted for Ph.D. Degree in Biochemistry

By

Seham Abd Elrahman Abou Arab

(M.Sc. Biochemistry, 1999)

Supervised by

Prof. Dr. Jahmy 7. Ali

Professor of Biochemistry Faculty of Science-Ain Shams University

Pro. Dr. Mervat A. Ismail Dr. Eman M. Abdel Azeem

Professor of biochyemistry National nutrition Institute Cairo University

Assist. Prof. of Biochemistry Faculty of Science Ain Shams University

Dr. Dina M. Seoudi

Lecturer of Biochemistry Faculty of Science Ain Shams University

Dr. Asmaa M. Abdulla

Lecturer of childhood studies National nutrition Institute Cairo University

Faculty of Science Ain Shams University

2009

باللمو إنى أسألك الحناة الملذ ورزقا لحيبا Yigia Vara

ACKNOWLEDGEMENT

First and foremost many thanks are due to Almighty GOD, the most precious and the most merciful, to WHOM I owe mercy, support and guidance in my life.

It is really difficult for me to find the suitable words that could express my deep gratitude and sincere appreciation towards **Prof.Dr. Fahmy T. Ali**, Professor of Biochemistry, Faculty of Science, Ain Shams University, for his perpetual guidance, creative thinking, valuable suggestions, fruitful discussion and profound revision of the results and discussion of the manuscript. Without his brilliant scientific ideas, tremendous concern and care, this thesis would not have been accomplished in this form.

Words are also inadequate to express my deepest gratitude to **Prof. Dr. Mervat A. Ismail**, Professor of Biochemistry, National Nutrition Institute, for her kind support, and offering me all possible laboratory facilities to accomplish the practical work of this study and above all for her motherly attitude. I am also deeply indebted to **Dr. Eman M. Abdel Azeem,** Ass. Prof. of Biochemistry, Faculty of Science, Ain Shams University for her moral help, patience, meticulous observation, continuous encouragement and generous advice during this work.

My deepest thanks are also extended to **Dr. Asmaa M. Abd-alla**, Lecturer of childhood studies, National Nutrition Institute for her sincere help and encouragement during the course of this study. Also, deep thanks are due to **Dr. Dina Mohamed Seoudi,** Lecturer of Biochemistry, Faculty of Science, Ain Shams University, for her continuous support, her valuable advises.

Finally, I wish to express my work to thank my **Mother**.

Seham Abdel Rahman.

LIST OF TABLES

Table		Page
1	Results of statistical analysis of age, SBP, DBP and BMI in obese and control groups.	82
2	Results of statistical analysis of FBS, insulin and HOMA-IR in obese and control groups.	89
3	Results of statistical analysis of lipids profile in obese and control groups.	95
4	Results of statistical analysis of homocysteine, CRP and adeponectin in obese and control groups.	103
5	Results of statistical analysis of MDA, total antioxidant, vitamins E and A in obese and control groups.	109
6	Correlation Coefficients between HOMA-IR and other parameters.	117
7	Correlation Coefficients between CRP and other parameters.	125
8	Correlation Coefficients between homocystein and other parameters.	129
9	Correlation Coefficients between insulin and other parameters.	132

LIST OF FIGURES

Figure		Page
1	Schematic of components of the MS.	
2	Contribution of adipocytokines to components of the metabolic syndrome. The schematic overview illustrates interactions of adipocytokines (which are not listed completely) with peripheral and central metabolic processes.	24
3	Obesity-mediated insulin resistance and associated complications	26
4	Standard curve of insulin concentrations in $\mu IU/ml$.	51
5	Standard curve of homocysteine concentrations in μ mol/L.	62
6	Standard curve of CRP concentrations in mg/L.	67
7	Standard curve of adiponectin concentrations in ng/ml.	71
8	Scatter diagram representing the individual data of age in control and patient groups.	83
9	Scatter diagram representing the individual data of SBP in control and patient groups.	84
10	Scatter diagram representing the individual data of DBP in control and patient groups.	85
11	Scatter diagram representing the individual data of BMI in control and patient groups.	86
12	% Change of age, SBP, DBP and BMI in	87

	different studied groups.	
13	Scatter diagram representing the individual data of FBS in control and patient groups.	90
14	Scatter diagram representing the individual data of insulin in control and patient groups.	91
15	Scatter diagram representing the individual data of HOMA-IR in control and patient groups.	92
16	% Change of FBS, insulin and HOMA-IR in different studied groups.	93
17	Scatter diagram representing the individual data of TAG in control and patient groups.	96
18	Scatter diagram representing the individual data of total cholesterol in control and patient groups.	97
19	Scatter diagram representing the individual data of HDL-c in control and patient groups.	98
20	Scatter diagram representing the individual data of LDL-c in control and patient groups.	99
21	Scatter diagram representing the individual data of LDL-c/HDL-c ratio in control and patient groups.	100
22	% Change of lipids profile in different studied groups.	101
23	Scatter diagram representing the individual data of homocysteine in control and patient groups.	104
24	Scatter diagram representing the individual data of CRP in control and patient groups.	105
25	Scatter diagram representing the individual data of adeponectin in control and patient groups.	106
26	% Change of homocysteine, CRP and	107

	adeponectin in different studied groups.	
27	Scatter diagram representing the individual data of MDA in control and patient groups.	110
28	Scatter diagram representing the individual data of total antioxidant in control and patient groups.	111
29	Scatter diagram representing the individual data of vitamin E in control and patient groups.	112
30	Scatter diagram representing the individual data of vitamin A in control and patient groups.	113
31	% Change of MDA, total antioxidant, vitamins E and A in different studied groups.	114
32	Correlation between HOMA-IR and insulin in control group.	118
33	Correlation between HOMA-IR and total antioxidant in control group.	119
34	Correlation between HOMA-IR and insulin in group I.	120
35	Correlation between HOMA-IR and vitamin A in group I.	121
36	Correlation between HOMA-IR and insulin in group II.	122
37	Correlation between HOMA-IR and LDL-c in group II.	123
38	Correlation between CRP and HDL-c in control group.	126
39	Correlation between CRP and FBS in group II.	127
40	Correlation between homocystein and vit.A in group I.	130

41	Correlation between total antioxidant and insulin in control group.	133
42	Correlation between insulin and vitamin A in group I.	134
43	Correlation between insulin and LDL c in group II.	135

ABBREVIATIONS

ACEIS	:	Angiotensin converting enzyme inhibitors.
ADA	:	American diabetes association.
ANOVA	:	Analysis of variance.
ASCVD	:	Atherosclerotic cardiovascular diseases.
BMI	:	Body mass index.
ATP	:	Adenosine triphosphate.
BUN	:	Blood urea nitrogen.
BP	:	Blood pressure.
BCR	:	B-cell receptor
CAD	:	Coronary Artery Disease.
CD	:	Cluster of differentiation.
CE	:	Cholesterol ester.
CETP	:	Cholesterol ester transfer protein.
CHD	:	Coronary heart disease.
CML	:	Carboxy-Methyl Lysin
CR	:	Consensus Repeats
CRF	:	Chronic Renal Failure
CRP	:	C- reactive protein.
CVD	:	Cardiovascular diseases.
DBP	:	Diastolic blood pressure.
DCCT	:	Diabetes control and complication trial.
DKA	:	Diabetic ketoacidosis.
DM	:	Diabetes mellitus.
EC	:	Endothelial cell.
ESR	:	Erythrocytic sedimentation rate
ESRD	:	End stage renal disease.
FBS	:	Fasting blood sugar.
FFAs	:	Free fatty acids.
GDM	:	Gestational diabetes mellitus.
GFR	:	Glomerular filtration rate.

GH	:	Growth hormone
GN	:	Glomerlornephritis.
HbA1 ₀	:	Non glycated hemoglobin
HbA1c	:	Glycated hemoglobin.
HbF	:	Fetal hemoglobin.
Нсу	:	Homocysteine.
HDL-C	:	High denesity lipoprotein cholesterol.
HGP	:	Hepatic glucose production.
HOMA-IR	:	Homeostasis model assessment.
IDDM	:	Insulin dependent diabetes mellitus.
IFG	:	Impaired fasting glucose.
IGT	:	Impaired glucose tolerance.
IL-1	:	Interlukein-1.
IL-6	:	Interlukein-6.
IR	:	Insulin resistance.
IRAP	:	Interleukin-1 receptor antagonist protein.
IS	:	Immunological Synapse
K^+	:	Potassium Ion.
LDL-C	:	Low density lipoprotein cholesterol.
LPL	:	Lipoprotein Lipase
LPS	:	Lipopolysaccharide.
MBG	:	Mean blood glucose.
MDA	:	Malondialdhyde.
MODY	:	Maturity Onset Diabetes Of Young.
MI	:	Myocardial infarction.
MS	:	Metabolic syndrome.
NAFLD	:	Non alcoholic fatty liver disease
NDDG	:	National Diabetes Data Group.
NIDDM	:	Non insulin dependent diabetes mellitus.
Р	:	Probability.
РСК	:	Protein Kinase C.
PCP	:	Primary care physicians.
PCOS	:	Polycystic ovary syndrome.

r	:	Pearson correlation co-efficient.
RR	:	Risk Ratio
RBCs	:	Red blood cells
RBP-4	:	Retinol binding protein- 4
RNA	:	Ribonucleic acid.
ROS	:	Reactive Oxygen species.
SBP	:	Systolic blood pressure.
STNF.R	:	Soluble tumor necrosis receptor.
T1D	:	Type 1 Diabetes.
TAG	:	Triacylglycerols.
TGF-β	:	Transforming growth factor-beta.
TNF	:	Tumor necrosis factor.
Vit.A	:	Vitamin A.
Vit.E	:	Vitamin E.
VL DL- C	:	Very low denesity lipoprotein cholesterol.
WHO	:	World Health Organization

ABSTRACT

A considerable increase in the prevalence of metabolic syndrome (MS) has been reported in parallel to the increasing frequency of childhood obesity and type 2 diabetes mellitus. This study provides current estimates of the metabolic syndrome and some of its individual components in obese Egyptian adolescents.

A total of 93 persons were submitted to this study and were classified into two groups. The first one included 53 obese patients without MS. Second group included 40 obese patients with MS. Both were compared with control group (40 healthy persons). All were cross matched regarding age, sex and race.

The studied subjects were investigated for serum Creactive protein, adiponectin and homocysteine. In addition, some lipid parameters via total cholesterol, HDl-c, LDL-c and triacylglycerol were also determined to reflect the presence of dyslipidemia and CVD. Moreover, MDA, total antioxidant and some vitamins were also measured to reflect the presence of oxidative stress.

Results showed that there was a highly significant elevation of HOMA-IR, CRP, homocysteine and lipid profile in patients without MS and with MS, while there was a highly significant decrease in adiponectin in the same patients.

Key words: Obesity, insulin resistance, HOMA-IR, adolescent.