Complete Blood Count in the Neonatal Intensive Care Unit

A thesis Submitted for Partial Fulfillment of Masters Degree in Pediatrics

By

Dr.Monaliza Ahmed Fikri El-Quadi Bch, Faculty of Medicine, Cairo University Police Authority Hospital

Under Supervision of Prof. Dr. Heba Hany Abou Hussein

> **Professor of Pediatrics** Faculty of Medicine, Cairo University

Prof. Dr. Dalia Ahmed Khairy Abdel Latif

Assistant Professor of Pediatrics Faculty of Medicine, Cairo University

Prof .Dr. Heba Mohammad Hassan

Professor of Clinical Pathology Faculty of Medicine, Cairo University

> Faculty of Medicine Cairo University 2012

Acknowledgements

First and foremost, thanks to **ALLAH** the most kind, the most merciful and to whom any success is related.

I would like to express my deepest gratitude and sincere thanks to **Prof. Dr. Heba Hany Abou Hussein** *Professor of Pediatrics, Faculty of Medicine, Cairo University,* for her continuous guidance, scientific support, and supervision.

I would also to thank **Prof. Dr. Dalia Ahmed Khairy Abdel Latif**, *Assistant Professor of Pediatrics, Faculty of Medicine, Cairo University*, for her reliable advice and support in every step of this work.

I would also like to thank **Dr. Heba Mohammad Hassan**, *Lecturer of Clinical Pathology, Faculty of Medicine, Cairo University* for her guidance and help.

To my family for without their everlasting love, encouragement & sacrifice, this work would never have been completed

CONTENTS

Pa	age
List of figures	Ι
List of tables	IV
List of abbreviations	VII
Abstract	KIII
Introduction & Aim of the work	1
Review of literature	
<u>Chapter I: RED BLOOD CELL INDICES</u>	
Development	4
Red blood cell indices	. 8
Hemoglobin and hematocrit	9
Mean cell volume (MCV)	12
• Mean Corpuscular Hemoglobin Content (MCHC)	13
CHAPTER II: WHITE BLOOD CELL INDICES	•
Development	. 14
White Blood cell indices:	
• Total and differential WBC count	18
Immature to total count	19
Disorders of White Blood Cells	
Neutrophils	22

• Monocytes24
• Eosinophils24
• Basophils24
Chapter III: PLATELETS
Development27
Thrombocytopenia
Causes of neonatal thrombocytopenia29
Subjects and Methods
Results
Discussion 80
Summary
Conclusion
Recommendations91
References92
Arabic summary

List of figures

Figure page
Figure 1. Sites and stages of fetal erythropoiesis4
Figure 2. Erythropoietic progenitors and the growth factors influencing
erythropoiesis
Figure 3. Hematopoiesis
Figure 4. Peripheral blood smear from a term newborn25
Figure 5. Distribution of male and female patients
Figure 6. Distribution of gestational age among patients
Figure 7. Mean and standard deviation of admission weight38
Figure 8. Mean and standard deviation of duration of stay38
Figure 9. Percentage of outcome among patients
Figure 10. Percentage of CRP among patients
Figure 11. Percentage of shift among patients
Figure 12. Percentage of clinical diagnosis on admission for patients41
Figure 13. Relation between neonatal diagnosis and gestational
age43
Figure 14. Relation between neonatal sex and gestational age44
Figure 15. Relation between outcome and gestational age45
Figure 16. Relation between CRP and gestational age46

Figure

page

Figure 17. Relation between shift and gestational age.47

Figure 18. Percentage of CRP in relation to neonatal diagnosis in patients

with gestational age <37 weeks

Figure 19. Percentage of CRP in relation to neonatal diagnosis in

Figure 22. Mean and standard deviation for CBC among neonates with

List of Tables

TablePage	
Table 1	
Mean Red Blood Cell (RBC) values during gestation.	
Table 2 1	1
Normal hematologic values during the first two weeks of life in the terr infant	m
Table 3 1	1
Post natal changes in the hemoglobin and Red Blood Cell (RBC) indice in term infants.	es
Table 4	2
Serial hemoglobin values in low birth weight infants.	
Table 5 20	6
Neonatal neutrophil indices reference ranges.	
Table 6	2
Classification of fetal and neonatal thrombocytopenia.	
Table 7	3
Comparison of the natural history of early and late thrombocytopenia ineonates.	in
Table 8	6
Percentage of female and male patients.	
Table 9	7
Percentage of gestational ages among patients.	

Mean and standard deviation for CBC among neonates with gestational age <37 weeks
Table 10
Mean and standard deviation of admission weight and duration of stay.
Table 11 38
Percentage of outcome of patients.
Table 12 38
Percentage of CRP among patients.
Table 13
Percentage of shift among patients.
Table 14
Percentage of clinical diagnosis on admission
Table 15 42
Relation between neonatal diagnosis and gestational age.
Table 16
Relation between neonatal sex and gestational age
Table 17
Relation between outcome and gestational age
Table 18
Relation between CRP and gestational age
Table 19
Relation between shift and gestational age
Table 20

Relation between CRP and neonatal diagnosis according to gestational age
Table 21 52
Relation between shift and neonatal diagnosis according to gestational age.
Table 22 55
Mean and standard deviation for CBC among neonates with gestational age <37 weeks
Table 23
Mean and standard deviation for CBC among neonates with gestational age >37 weeks
Table 2459
Mean and standard deviation for CBC among neonates with gestational age <37 weeks.
Table 2561
Mean and standard deviation for CBC among neonates with gestational age >37 weeks.
Table 2665
Correlation analysis between WBC, RBC, Hb, Hct, and different variables for patients with gestational age <37 weeks.
Table 2769
Correlation analysis between WBC, RBC, Hb, Hct, and different variables for patients with gestational age >37 weeks.
Table 2871
Correlation analysis between PLT, MCV, MCH, MCHC, and different variables for patients with gestational age <37 weeks.

ble 29	

Correlation analysis between PLT, MCV, MCH, MCHC, and different variables for patients with gestational age >37 weeks.

Table 30......75

Correlation analysis between lymphocytes, monocytes, eosinophils, basophils, and different variables for patients with gestational age <37 weeks.

 Table 31......77

Correlation analysis between lymphocytes, monocytes, eosinophils, basophils, and different variables for patients with gestational age >37 weeks.

Correlation analysis between staff, segmented, TSB, DSB, and different variables for patients with gestational age <37 weeks.

 Table 33......80

Correlation analysis between staff, segmented, TSB, DSB, and different variables for patients with gestational age >37 weeks.

List of Abbreviations

СВС	Complete Blood Count
RBC	Red Blood Cells
WBC	White Blood Cells
Hb	Hemoglobin
Hct	Hematocrit
CRP	C Reactive Protein
PLT	Platelets
LYMPH	Lymphocytes
MONO	Monocytes
EOSINO	Eosinophils
BASO	Basophils
SEGS	Segmented leucocytes
MCV	Mean Corpuscular Volume
МСН	Mean Corpuscular Hemoglobin
МСНС	Mean Corpuscular Hemoglobin content
TSB	Total Serum Bilirubin
DSB	Direct Serum Bilirubin

<u>Abstract</u>

In this work, the complete blood count of neonates admitted to the Cairo University Pediatric Hospital NICU was studied in the period from January 2006 to December 2006, and correlations between findings were performed.

The number of studied patients was 800 with preterm patients constituting 34.1% and full term patients 65.9%. 82.9% of the patients were discharged and 17.1% died.

The most common diagnosis in the preterm group was respiratory distress (35.2%) and the most common diagnosis in the full term group was neonatal jaundice (47.1%). The least common diagnosis in both groups was hypoxic ischemic encephalopathy.

On correlating the complete blood count findings with the clinical diagnoses of the patients, it was found in cases of neonatal sepsis, the WBC were lower than previous studies but hemoglobin and platelets were in the same range.

In cases of low birth weight, preterms had higher WBC, platelets, and hematocrit than full terms but they had lower hemoglobin.

On studying correlations between complete blood count findings, preterms had positive correlations between WBC and RBC, WBC and hemoglobin, hematocrit and platelets, and they had non significant correlations between WBC and hematocrit, WBC and platelets, hemoglobin and platelets.

Also, preterms and full terms had negative correlation between hemoglobin and post natal age, but no correlation with gestational age.

Key word: Complete Blood , Neonatal Intensive Care , Pediatrics

INTRODUCTION

The first few weeks to months after birth are marked by dramatic physiologic and anatomic changes in every organ system as the neonate adapts to extrauterine life independent of the placenta.

Clinical presentation of illness and laboratory data must be interpreted against a backdrop of major developmental alterations. (**Cavaliere 2004**). Performing a CBC has acquired an almost ritual quality. Virtually all published guidelines suggest obtaining this test. (**Escobar, 1999**).

The quality of laboratory test results is affected by preanalytic variables such as specimen collection, specimen handling, sample size, limited blood availability, the variation of test results depending on blood sampling sites, and the effect of vigorous crying or exertion. Although these factors are important for samples from patients of any age, they are particularly important in the neonatal period and infancy (Coffin et al 2002) Introduction

There is a statistically significant difference between capillary and venous or arterial CBCs in the neonatal period. The blood from a skin puncture has higher values for hemoglobin, hematocrit, RBCs, WBCs, and neutrophils (**Kayiran 2003**) The perfusion, metabolic state, and other factors may further affect the composition of the capillary blood, and disturbed circulation, particularly microcirculation, results in significantly higher values of capillary than venous hematocrit

(Linderkamp 1977)

The time of umbilical cord clamping also affects the hemoglobin levels in neonates. A meta-analysis of 15 controlled trials demonstrated that delayed clamping for 2 minutes or more after birth is beneficial to the newborn, although it may cause asymptomatic polycythemia

(Hutton 2007). This beneficial effect extends into early infancy, and less severe physiologic anemia developed in children whose umbilical cord clamping was delayed (Ceriani 2007).