`Ain Shams University

Faculty of Girls

Physics Departement

Experimental studies on Mather-type plasma focus discharge

Presented by

Tamer Fawzy Mohammad Al Hossiny Emara

M.Sc. Physics (2001)

For

Ph. D. Degree of Physics

Supervisors

Prof. Dr. Aida El-Bialy

Prof. Dr. Hanaa M. Soliman

Physics Department

Faculty of Girls

Nuclear Research Center

Plasma Physics Departement

Ain Shams University

Atomic Energy Authority

Dr. Tarek M.Y. Allam

Plasma Physics Departement

Nuclear Research Center

Atomic Energy Authority

2011

Ain Shams University

Faculty of Girls

Physics Departement

Experimental studies on Mather-type plasma focus discharge

Presented by

Tamer Fawzy Mohammad Al Hossiny Emara

M.Sc. Physics (2001)

For

Ph. D. Degree of Physics

Supervisors

Signature

Prof. Dr. Aida El-Bialy

Physics Department

Faculty of Girls

Ain Shams University

Prof. Dr. Hanaa M. Soliman

Plasma Physics Departement

Nuclear Research Center

Atomic Energy Authority

Dr. Tarek M.Y. Allam

Plasma Physics Departement

Nuclear Research Center

Atomic Energy Authority

Abstract

The aim of this work is to study the characteristics and electrical parameters of the of the used plasma focus system. Also, the plasma current sheath in the axial phase is studied. Finally, the emissions of particles and X-rays from the system and their characteristics are investigated.

In this experiment, a Mather type plasma focus of stored energy in the range from ~ (1 kJ - 2.2 kJ), (8kV-12kV) was used. The capacitor bank consists of 4 capacitors each of 7.71 µF. Argon gas was used and its pressure varied between 0.5 and 2 torr. Several diagnostic techniques were used, such as Rogowski coil, voltage probe, identical double magnetic probes, a Faraday cup, a PBX-65 photodiode with biasing circuit to measure the discharge current, discharge voltage, azimuthal magnetic field induction, intensity of energetic particles emission, and time resolved x-ray emission respectively.

In the first part of our work, the current and voltage signals were used to calculate the electrical circuit parameters and to study their behaviors as a function of discharge time like the inductance, impedance, power flow, and energy dissipation. The experimental results showed that, the maximum value of discharge current \approx 156.6 kA at charging voltage of 12 kV. Also, the maximum value of power flow and energy dissipation were 359MW and 143 Joule respectively, at the same charging voltage (12kV) and at argon gas pressure = 1.5 torr. The external circuit inductance was calculated from the discharge current signal without plasma (V_{ch} =12 kV and p=8 torr) and it was about 160.5 nH. The plasma inductance curves showed that the inductance starts high at the beginning of discharge and begins to decrease till it shows a sudden and temporal increase at the focus time, the peak value of plasma inductance at the focus time =27.3 nH at V_{ch} = 12 kV and p=1.5 torr . The external circuit resistance was

ACKNOWLEDGMENTS

The author would at first express his greatest thanks to **ALLAH** for every thing as nothing is possible without the well and help of **ALLAH**.

The author would like to express his deepest appreciation to **Prof. Dr. Aida El-Bialy**, Professor of physics, faculty of Girls, Ain Shams University, for her continuous support and encouragement.

The author would like to express his greatest gratitude to Prof. **Dr. Hanaa M. Soliman**, professor of plasma physics, Plasma and Nuclear Fusion Department, Nuclear Research Center, Atomic Energy Authority for pointing out the research program, discussion, and continuous assistance.

The author would like to express his great appreciation to **Dr. Tarek Allam** for the useful cooperation and discussions.

The author would like to express his deepest gratitude to **Dr. Gamal Al-Kashef** for his devoted cooperation and assistance.

The author would like to express his greatest appreciation for all his **family** for their everlasting support and love.

The author would like to express his deepest appreciation for all **colleagues** at the Plasma Department for their help and support and for being a family.

The author would like to thank **Mr.Ahmad El Refai Ibrahiem Khedr** for his technical efforts.

Contents

Subject	Page
Summary	i
Abstract	vi
Chapter 1	1
1.1Introduction	1
1.2 Plasma dynamics in different phases of	
the plasma focus discharge	5
1.2.1Break-down phase	6
1.2.2.Axial acceleration phase.1.2.3. Radial collapse phase.1.3 Plasma focus devices.	6 8 13
1.3.1. The Mather-type device	13
1.3.2. The Filippov-type device	13
1.4. Plasma focus characteristics.	15
1.5. Plasma focus models	16
1.5.a. Snow-plough model	16
1.5.b Slug model	18
1.5. c. Radiative plasma focus model	19
1.6. X-rays and charged particles emission	25
1.6.1 X-rays emission	25
1.6.2. Charged particles emission	26
1.7 Outline of this thesis	28

1.8 Discussion	29
Chapter 2	30
2.1.Introduction.	30
2.2. Plasma current sheath behaviors (ordynamics)	
and emission studies	31
2.3 discussion	51
Chapter 3	52
3.1. Introduction	52
3.2 The electrode system	54
3.3. The discharge chamber and vacuum system	55
3.4. The capacitor bank	56
3.5. The switching system	58
3.6. The triggering system	60
3.7. The dump switch	61
3.8. The power system	63
3.9. Discussion	64
Chapter 4	65
4.1. Introduction	65
4.2. Voltage probe	66
4.3. Rogowski coil	68
4.4. Faraday cup	71
4.5. Magnetic probe	73

4.6. X-ray PIN Diode detector	76
4.7 Discussion	79
Chapter 5	80
5.1 Introduction	80
5.2 Discharge current measurements	80
5.3 Discharge voltage measurements	83
5.4 Power flow	85
5.4.1 Power flow calculation	85
5.4.2 Variation of power flow with time at different	
operating conditions	85
5.4.3. 3D graph of the power flow at	
various conditions	92
5.5 Energy	93
5.5.1 Variation of energy with time at	
different operating conditions	93
5.5.2. 3D graph of the energy variation with	
time at various operating conditions.	100
5.6 Inductance	101
5.6.1. Total circuit inductance	101
5.6.2. External circuit inductance	102
5.6.3. External circuit resistance	102
5.6.4. Variation of plasma inductance with time	

for different operating conditions103
5.6.5. 3D graph of the plasma inductance variation
with time at various operating conditions
5.7. Impedance
5.7.1. Circuit impedance113
5.7.2. Load impedance114
5.7.3. 3D graph of the load impedance variation
with time at various operating conditions119
5.8 Discussion
Chapter 6
6.1Introduction
6.2 Measurement of the rate of change of azimuthal
magnetic field induction with time, $\left(\frac{dB_{\theta}}{dt}\right)$, along the
coaxial electrodes
6.3 Determination of plasma current sheath axial
velocity along the coaxial electrodes127
6.4 Variation of axial plasma sheath acceleration
with axial distance
6.5 Axial plasma current sheath velocity at different
operating conditions for different axial distances143
6.6 Discussion
Chapter 7159

7.1 Introduction
7.2 Energetic particles beam emission measurements160
7.2.1 Energetic particles beam intensity
measurements
7.2.2. Variation of energetic particles beam
velocity with argon filling pressure at varios
charging voltages171
7.2.3 Variation of energetic particles beam
velocity with charging voltages at different
filling gas pressures
7.2.4. Distribution of energetic particles beam
velocity with filling pressure at different charging
voltages for the 1 st and 2 nd half cycles177
7.2.5. Distribution of energetic particles
beam velocity with charging voltage at
different filling pressures178
7.2.6. Variation of energetic particles beam
energy with argon filling pressure180
7.3 X-ray emission measurements
7.3.1 X-ray intensity measurements with pressure
7.3.2 X-ray intensity measurements with
charging voltage184

7.4 Discussion	
Chapter 8 (Conclusion)	187
References	191
الملخص العربي	194

List of figures and tables

Fig.(1.1) Schematic drawings of Mather-type and
Filippov-type Dense Plasma Focus devices
Fig. (1.2) Plasma current sheath dynamics in a
plasma focus device (a) and the corresponding
current and voltage signal profiles showing the
phases of the discharge (b)5
Fig.(1.3) Typical waveforms of current (upper trace)
and voltage (lower trace)10
Fig. (1.4) Configurations of (a) Mather type and
(b) Filippov type plasma focus systems14
Fig.(1.5) Plasma focus phases (a) Axial acceleration phase,
(b) Radial compression phase20
Fig. (1.6) Equivalent circuit of the radiative
plasma focus21
Fig. (1.7) Emissions from the plasma focus26
Fig. (3.1) Common view of the plasma focus device53
Fig. (3.2) schematic diagram of the coaxial
electrodes system
Fig. (3.3) cross section of the discharge chamber
and vacuum system

Fig. (3.4) Schematic diagram of a pressurized
air gap switch
Fig. (3.5) the electric circuit of the triggering system60
Fig. (3.6) Schematic diagram of dumping switch62
Fig. (4.1) Voltage probe
Fig. (4.2a) Rogowsky Coil with an integrating circuit69
Fig. (4.2b) Rogovski coil with shunt resistance70
Fig. (4.3) Schematic diagram of the used Faraday cup72
Fig. (4.4) Magnetic probe arrangement with the
integrating circuit75
Figure (4.5a,b) (a) The arrangement for the soft x-ray
detector. (b) Biasing circuit for the x-ray diode78
Fig. (5.1) Current signal obtained from the
Rogowskiy coil at charging voltage = 12 kV, argon
pressure of 8 torr, and time base 10 μ s/div
Fig.(5.2) A sample of the current oscillograms
showing a current dip
Fig. (5.3) current and voltage oscillograms showing a
dip and a spike at V _{ch} =11 kV, p=2 torr84
Fig.(5.4a,b,c) Power flow variation with time for
p=0.5 torr at 8,10,12kV (a,b,c respectively)86
Fig.(5.5a,b,c) Power flow variation with time for

p=1 torr at 8,10,12kV (a,b,c respectively)87
Fig.(5.6a,b,c) Power flow variation with time for
p=1.5 torr at 8,10,12kV (a,b,c respectively)88
Fig.(5.7a,b,c) Power flow variation with time for
p=2 torr at 8,10,12kV (a,b,c respectively)
Fig. (5.8) Max. power flow as a function of Vch
for different pressures90
Fig. (5.9) Max. power flow as a function of pressure
for different V _{ch} 91
Fig.(5.10) The power flow behavior as a function of
different operating conditions
Fig.(5.11a,b,c) Energy variation with time for
p=0.5 torr at 8,10,12 kV charging voltage94
Fig.(5.12a,b,c) Energy variation with time for
p=1 torr at 8,10,12 kV charging voltage95
Fig.(5.13a,b,c) Energy variation with time for
p=1.5 torr at 8,10,12 kV charging voltage96
Fig.(5.14a,b,c) Energy variation with time for
p=2 torr at 8,10,12 kV charging voltage97
Fig. (5.15) Max. energy as a function of (V_{ch})
for different pressures
Fig. (5.16) Max. energy as a function of pressure

for different (V _{ch})	99
Figure (5.17) 3D graph of the energy variation with	
time at different operating conditions	100
Fig. (5.18) The equivalent circuit of the plasma	
focus system	103
Fig.(5.19a,b,c) Variation of inductance with time	
at 0.5 torr for 8, 10, 12 kV respectively	105
Fig.(5.20a,b,c) Variation of inductance with time	
at 1 torr for 8, 10, 12 kV respectively	106
Fig.(5.21a,b,c) Variation of inductance with time	
at 1.5 torr for 8, 10, 12 kV respectively	107
Fig.(5.22a,b,c) Variation of inductance with time	
at 2 torr for 8, 10, 12 kV respectively	108
Fig. (5.23) Variation of plasma inductance at	
focusing time with charging voltage for different	
filling pressures	109
Fig. (5.24) Variation of plasma inductance at	
focusing time with charging voltage for different	
filling pressures	110
Fig. (5.25) A 3D graph of the relation between the	
inductance and time.	111
Table (5.1) comparison between the system under	

consideration and other known systems113
Fig. (5.26a,b,c) Variation of load impedance with
time at different charging voltages for 0.5 torr of
argon filling pressure115
Fig. (5.27a,b,c) Variation of load impedance with
time at different charging voltages for 1 torr of
argon filling pressure
Fig. (5.28a,b,c) Variation of load impedance with
time at different charging voltages for 1.5 torr of
argon filling pressure
Fig. (5.29a,b,c) Variation of load impedance with
time at different charging voltages for 2 torr of
argon filling pressure
Figure (5.30) 3D graph of the impedance variation with
time at different operating conditions119
Fig.(6.1) Double magnetic probe signal with current
signal at p=2 torr, V_{ch} =12kVat distances 3 cm and 6 cm
from the breech
Fig. (6.2a,b,c,d,e,) Variation of plasma current
sheath arrival time vs. position (axial distance)
at the first half cycle of discharge123
Fig. (6.3a,b,c,d,e,) Variation of plasma current