Laboratory Properties and Clinical Performance of Three Different Fluoride Releasing Restorative Materials

Thesis

Submitted to the Department of Pediatric Dentistry and Dental Public Health Faculty of Dentistry Ain Shams University In Partial fulfillment of the requirements of the Doctorate Degree in Pediatric Dentistry

By

Basma Gamal Salah El-Din Mahmoud Awad Assistant Lecturer M.Sc, Faculty of Dentistry, Ain Shams University 2013 B.D.S, Faculty of Dentistry, Ain Shams University 2007

2017

Supervisors

Dr. Noha Samir Kabil

Associate Professor, Pediatric Dentistry and Dental Public Health Faculty of Dentistry Ain Shams University

Dr. Mariem Osama Wassel

Lecturer, Pediatric Dentistry and Dental Public Health Faculty of Dentistry Ain Shams University

Dr. Farid Mohammed Sabry El-Askary

Professor, Operative Dentistry and Vice Dean for Students Affairs Faculty of Dentistry Ain Shams University

Dedicated to

My Son

Who his smile is the sunlight and joy that gave me the energy to continue my work.

My Husband

Who without his help, understanding, love and continuous endless support, I wouldn't have been standing here today!

My Mother

Who always inspires me with her love and prayers.

My Father

Who taught me that dedication and hard work are the essentials for a successful life.

My Brother

Without his love, encouragement and hi-tech services, this thesis would not have been possible.

And my Famíly

For their love, patience, tremendous support and help. Without them this piece of work would have been a long lonely trip.

Acknowledgement

First, I would like to express my greatest gratitude to the Almighty *ALLAH*, the one and only, who has given me the opportunity, strength, courage and blessing to pursue this work. However, conducting the research and writing this thesis required the patience, persistence and motivation of many people whom I would like to personally acknowledge. First, I would like to extend my deepest thanks to my supervisors:

Associate Professor Dr. Noha Samir Kabil, for her continuous guidance, support, unlimited encouragement and love. Professor Dr. Farid Mohammed Sabry El Askary, for his patience, time, continuous education and sincere

Dr.Maríam Osama Wassel, for all what she taught me throughout the writing process, which added a lot to me not only from a professional level but also from a personal one.

advice throughout my career life.

These acknowledgements would be incomplete without expressing my deepest appreciation to all my department staff and colleagues for their utmost support and encouragement.

Last, but certainly not least, to my mother-in-law, father-in-

law, sisters-in-law and my genuine friends who contributed in oneway or another to this study. To all of them, please accept my sincere and profound gratitude.

Special acknowledgement of this achievement goes to VOCO Company (VOCO GmbH. Cuxhaven, Germany) and SDI (SDI Dental Limited, Dublin, Ireland) for supplying the colored polyacidmodified composite resin and flowable resin composite materials used in this study.

Table of Contents

DEDICATION	III
ACKNOWLEDGEMENT	IV
LIST OF TABLES	VII
LIST OF FIGURES	IX
LIST OF ABBREVIATIONS	XII
INTRODUCTION	14
REVIEW OF LITERATURE	18
AIM OF STUDY	56
MATERIALS AND METHODS	58
RESULTS	102
DISCUSSION	133
SUMMARY	158
CONCLUSION	164
RECOMMENDATIONS	167
REFERENCES	169
APPENDIX	186
ARABIC SUMMARY	192

List of Tables

Table 1: Materials, Compositions, Manufacturers	59
Table 2: Clinical inclusion and exclusion criteria	86
Table 3: Radiographic inclusion and exclusion criteria	87
Table 4: USPHS criteria for the clinical evaluation of the	
restorations	96
Table 5: Two-way analysis of variance for the effect of	
material, time and their interaction on flexural strength	102
Table 6: Means± Standard Deviations for the effect of the	
materials within each time and storage time within each	
material on the flexural strength	104
Table 7: Two-way analysis of variance for the effect of	
material, time and their interaction on microhardness	107
Table 8: Means± Standard Deviations for the effect of the	
materials within each time and storage time within each	
material on the microhardness	109
Table 9: Two-way analysis of variance for the effect of	
material, time and their interaction on surface roughness	112
Table 10: Means± Standard Deviations for the effect of the	
materials within each time and storage time within each	
material on the surface roughness	114
Table 11: Means± Standard Deviations for the degree of	
conversion	116
Table 12: Two-way analysis of variance for the effect of	
material, time and their interaction on fluoride release	118

Table 13: Means± Standard Deviations for the effect of the	
materials within each time and storage time within each	
material on the fluoride release	120
Table 14: Two-way analysis of variance for the effect of	
material, time and their interaction on fluoride recharge-ability.	122
Table 15: Means± Standard Deviations for the effect of the	
materials within each time and storage time within each	
material on the fluoride recharge-ability	123
Table 16: Distribution of the treated teeth according to the jaw	
and number of teeth	125
Table 17: Marginal adaptation evaluation results of the	
materials under study over the 12-month period	126
Table 18: Marginal discoloration evaluation results of the	
materials under study over the 12-month period	127
Table 19: Anatomic form evaluation results of the materials	
under study over the 12-month period	128
Table 20: Secondary caries evaluation results of the materials	
under study over the 12-month period	129
Table 21: The choice of the filling materials by the selected	
subjects	131

List of Figures

Figure 1: Twinky Star [®] Flow (Blue and Pink)	60
Figure 2: Compoglass [®] Flow	60
Figure 3: Wave mv	60
Figure 4: GC Fuji II LC	60
Figure 5: Futurabond M+	60
Figure 6: Equia TM Coat	60
Figure 7: Ketac TM Conditioner	60
Figure 8: Spilt stainless steel mold for composite mold	
fabrication	62
Figure 9: Rubber base mold for flexural strength	
specimens	63
Figure 10: Copper frame enclosing the composite model	64
Figure 11: Flow chart showing the distribution of the	
flexural strength specimens	66
Figure 12: Universal Testing Machine	69
Figure 13: Plastic mold supplied together with Elipar Light	
curing unit by 3M ESPE	70
Figure 14: Copper frame enclosing the composite disc	
model	72
Figure 15: Rubber base mold for disc shape specimens	72
Figure 16: Flow chart showing the distribution of the	
microhardness specimens	74
Figure 17: Vicker's Microhardness Tester	77
Figure 18: Stereomicroscope	78
Figure 19: Flow chart showing the distribution of the	
surface roughness specimens	79

Figure 20: Flow chart showing the distribution of the	
degree of conversion specimens	8
Figure 21: FTIR	8
Figure 22: Hydraulic press	8
Figure 23: Pelleting device	8
Figure 24: Flow chart showing the distribution of the	
fluoride release specimens	8
Figure 25: Incubator	8
Figure 26: Ion Chromatograph device	8
Figure 27: Consent	8
Figure 28: Assent	8
Figure 29: Flow chart showing the division of different in-	
vivo groups	8
Figure 30: Teeth restored with Twinky Star [®] Flow Blue	ç
Figure 31: Teeth restored with Twinky Star [®] Flow Pink	ç
Figure 32: Questionnaire to assess the patient's preference	
regarding the color of filling material as well as their	
attitude towards the dental experience	Ç
Figure 33: Graph demonstrating the flexural strength for	
each material at each storage time	1(
Figure 34: Graph demonstrating the microhardness for each	
material at each storage time	11
Figure 35: Graph demonstrating the surface roughness for	
each material at each storage time	11
Figure 36: Graph demonstrating the degree of conversion	
for each material at 24 hours	11

Figure 37: Graph demonstrating the fluoride release for	
each material at each storage time	121
Figure 38: Graph demonstrating the fluoride recharge-	
ability for each material at each storage time	124
Figure 39: Graph demonstrating the percentage of Bravo	
scores with respect to marginal adaptation of the different	
materials under study	127
Figure 40: Graph demonstrating the percentage of Bravo	
scores with respect to anatomic form of the different	
materials under study	129

List of Abbreviations

ADA	Americam Dental Association
ANOVA	Analysis of Variance
APF	Acidulated Phosphofluoride
BisGMA	Bisphenol glycol methacrylate
DC%	Degree of conversion
FTIR	Fourier transform infra-red
GIC	Glass ionomer cement
g	grams
HEMA	hydroxyethyl methacrylate
KBr	Potassium Bromide
LED	Light emitting diode
mm	milli-meter
min	minutes
ml	milliliter
MIR	Middle inftra-red
MPa	Mega Pascal
NAF	Sodium Fluoride
PAM-CR	Polyacid-modified composite resin
p.p.m	Part per million
PEGMA	Polyethylene glycol dimethacrylate
RCT	Randomized Controlled Study
R.P.M	Rotation per minute
SEM	Scanning electron microscope
SiC	Silicon Carbide
SD	Standard Deviation
SPSS	Statistical Package for Social Science
S	Seconds
TEGMA	Triethylene glycol dimethacrylate
USPHS	United States Public Health Services
UDMA	Urethane dimethacrylate
WV	Weight by volume
WT%	Weight perecent
YbF3	Yettribium Trifluoride
°C	Degree centigrade
μL	Micro-Litre
k	Kappa

Introduction

Introduction

The restoration of carious primary teeth plays an underestimated role in pediatric dentistry. This is quite astonishing for many reasons, one of which is that there are many new materials introduced to the market in the recent years ⁽¹⁾ and yet there is minimal data in literature discussing their performance ⁽²⁾.

Many tooth-colored restorative materials such as; high viscous glass ionomer cement, resin-modified glass ionomer cement, resin composite, and polyacid-modified composite resin are available as filling materials for carious primary teeth ⁽³⁾.

Fillings for primary teeth require some requisites such as; being less technique sensitive, ease of application, fluoride release, biocompatibility, and patient acceptance.

Polyacid-modified composite resins, known primarily as compomers, were introduced in the early 1990s⁽⁴⁾. They are a group of aesthetic materials used for restoring decayed primary teeth ⁽²⁾. They were introduced in the market as a new class of dental material designed to combine the esthetics of the traditional resin composite material with the fluoride release of glass-ionomer cements. The name "compomer" is derived from the two 'parent' materials, the 'comp' coming from composite, and 'omer' from ionomer ⁽⁵⁾.

Polyacid-modified composite resins (PAM-CRs) are more closely related to resin composites. They offer excellent esthetics and show intermediate wear characteristics and shrinkage ⁽⁶⁾. The initial setting of the material is achieved by light curing and only a limited

acid/ base reaction occurs. Ion exchange adhesion never occurs, as in conventional glass ionomers, in fact they still release little amounts of fluoride $^{(7, 8)}$.

Clinical studies have shown that PAM-CRs perform well in different applications. They are used as a filling material for Class I,II and V in primary teeth. They are also used as fissure sealants and as cement for fixing orthodontic bands ⁽⁹⁾.

Based on high clinical success rates, PAM-CRs are now considered an effective alternative to other materials for restorative therapy in anterior and posterior primary teeth. A minimum amount of compliance is still mandatory in order to allow for a few minutes of adhesive pretreatment and layering without contamination ⁽¹⁾.

New and modified forms of PAM-CRs for restoring primary teeth have been introduced in the market. These modifications target several aspects, among which is the clinical aspect. Such material comes in a flowable form having a low modulus of elasticity, low surface tension accordingly more wettability, better bonding and increased flexibility to dissipate the stresses resulting from polymerization shrinkage ⁽¹⁰⁾.

The use of flowable forms of filling materials seem to be more convenient with children as they offer ease of application, shorter duration for insertion, and serve to lessen the chances of poor adaptation, voids and secondary caries formation ⁽¹¹⁾.

From the psychological aspect, the PAM-CR material comes in different colors motivating the parent and child towards the filling