

Ain Shams University Faculty of Education Department of Physics

Fabrication and Characterization of Zinc Gallotelluride Thin films

Thesis

Submitted for the Degree of Master for Teacher's Preparation in Science (Physics)

By Dalia Mohamed Abd El Basset Ahmed

B.Sc. and Education 2006, Gen. Diploma (Physics) 2007, Spec. Diploma (Physics) 2008

> **To** Department of Physics Faculty of Education Ain Shams University

2011

Approval sheet

Title : Fabrication and Characterization of Zinc Gallotelluride Thin films.

Candidate: Dalia Mohamed Abd El Basset Ahmed.

Degree : Master for Teacher's Preparation in Science (Physics).

Board of Advisors

Approved by

Signature

Date of presentation: / / 2011

Acknowledgement

The author wishes indebted with her utmost thanks to Prof. Dr/ **S.S.** *Fouad* for continuous supervision, valuable suggestions, encouragement and fruitful advice through this work.

Deepest gratitude to Dr/ *G.B. Sakr* for his advice, valuable help, encouragement during this study and fruitful advice throughout this work.

The author wishes to thank Dr/ *I.S. Yahia* for his valuable help, encouragement and fruitful advice throughout this work.

The author wishes to thank Prof. Dr / F. Yakuphanoglu Department of Metallurgical and Materials Engineering, Firat University, Elazig, Turkey, for his fruitful advice throughout this work and his laboratory facilities.

The author wishes to thank Dr / *Abd El Rahman Salam* Head of electron microscope and thin-film, Department of Solids, National Center for Research for his valuable suggestions, fruitful advice throughout this work and his laboratory facilities.

Finally, I am very much thankful to all the staff members and colleagues of semiconductor laboratory and all the members of physics department, Faculty of education, Ain Shams University.

Contents

List of figures	1
List of tables	10
Abstract	11
Summary	13
Introduction	17
Chapter I: Theoretical background and literature	24
review	
A- Theoretical background	24
1.1. Semiconductor substances	24
1.2. Chalcopyrite compounds	25
1.3. Defect chalcopyrite compounds	26
1.4. Structural properties of Defect chalcopyrite compounds	27
1.5. Semiconductor Heterostructures	28
1.6. Band theory and structural properties of	30
amorphous semiconductors	2.4
1.7. Electrical conduction in amorphous semiconductors	34
1.7.1.Dc conduction in amorphous semiconductors	34
1.7.2. Ac conduction of amorphous semiconductors	38
1.7.3. Models for ac conduction	39
1.8. Dielectric properties of amorphous semiconductors	43
1.9. Switching and memory effects in amorphous semiconductors	46
1.10. Optical properties of thin films	49
1.11. Determination of the optical constants	51
B- Literature Review	54
Chapter II: Experimental techniques	60
2.1. Bulk sample preparation	60
2.2. Thin film samples preparation	61
2.3. Thickness measurements	63

2.4. Samples Annealing	66
2.5. Structural identification of the investigated samples	66
2.6. Current–voltage and capacitance- voltage analysis of the p-ZnGa ₂ Te ₄ /n-Si HJD	70
2.7. Complex impedance spectroscopy measurements for p-ZnGa ₂ Te ₄ /n-Si HJD	71
2.8. Electrical measurements	72
2.9. Optical measurements	75
2.10. Switching phenomenon measurements	76
Chapter III: Structural identification and optical	79
properties of $ZnGa_2 Ie_4$ thin films	70
3.1. Structural identification of $ZnGa_2 Ie_4$	/9
3.1.1. Energy dispersive X-ray analysis (EDX)	/9
3.1.2. Differential Thermal Analysis (DTA)	80
3.1.3. X-ray diffraction patterns (XRD)	81
3.1.4. Transmission electron microscope (TEM)	85
3.1.5. Atomic Force Microscope (AFM)	87
3.2. Optical properties of $ZnGa_2Te_4$ thin films	89
3.2.1. Spectral behaviour of the transmittance and reflectance	89
3.2.2. The Refractive index and absorption coefficient	90
3.2.3. Dispersion energy parameters of ZnGa ₂ Te ₄ thin films	92
3.2.4. Optical absorption at the fundamental edge	94
3.2.5. Determination of the dielectric constants	97
3.2.6. Determination of the relaxation time	98
3.2.7. Determination of the loss tangent	99
3.2.8. Determination of the optical conductivity	99

Chapter IV: Investigation of dc conductivity and 101 switching phenomenon of the defect chalcopyrite $ZnGa_2Te_4$ compound

- 4.1. Temperature dependence of the dc electrical 101 conductivity (σ_{dc}) for ZnGa₂Te₄ thin film
- 4.2. Dynamic and Static current-voltage (I-V) 104 characteristics for ZnGa₂Te₄ thin films
- 4.3. Temperature dependence of the threshold 105 voltage V_{th} of ZnGa₂Te₄ thin film

Chapter V: Analysis of the current voltage (*I-V*) 111 characteristics of the nano-crystalline $p-ZnGa_2Te_4/n$ -Si heterojunction diode (HJD)

- 5.1. Dark current-voltage analysis of the 111 p-ZnGa₂Te₄/n-Si HJD
- 5.2 The Reverse current–voltage characteristics 123 analysis of the p-ZnGa $_2$ Te $_4$ /n-Si HJD

Chapter VI: Analysis of the capacitance-voltage 125 (C-V) characteristics of the nano-crystalline p-ZnGa₂Te₄/n-Si heterojunction diode (HJD)

- 6.1. Analysis of (C-V) and (G-V) characteristics for 125 the p-ZnGa₂Te₄/n-Si HJD
- 6.2. Analysis of series resistance for the 133 p-ZnGa₂Te₄/n-Si HJD
- 6.3. Analysis of Dielectric properties of the 138 p-ZnGa₂Te₄/n-Si HJD

Chapter VII: Complex impedance spectroscopy 145 of the nano-crystalline $p-ZnGa_2Te_4/n-Si$ heterojunction diode (HJD)

- 7.1. Impedance spectrum analysis for the 145 p-ZnGa₂Te₄/n-Si HJD
- 7.2. Electrical conductivity analysis for the 153 p-ZnGa₂Te₄/n-Si HJD

7.2.1. Temperature dependence of dc electrical 154 conductivity for the p-ZnGa₂Te₄/n-Si HJD

7.2.2. Frequency and temperature dependence of ac 155 electrical conductivity for the p-ZnGa₂Te₄/n-Si HJD

7.3. Dielectric properties of the $p-ZnGa_2Te_4/n-Si$ 161 HJD

7.3.1. Frequency and Temperature dependencies of 161 the dielectric constant for the $p-ZnGa_2Te_4/n-Si$ HJD

7.3.2. Frequency and Temperature dependencies of 163 the dielectric loss for the $p-ZnGa_2Te_4/n-Si~HJD$

Conclusion	167
References	172
Published papers	
Arabic summary	

List of figures

Fig.(1.1) Crystal structure of Defect Chalcopyrite 28 compounds.

Fig.(1.2). The three types of semiconductor 29 heterojunctions organized by band alignment.

Fig.(1.3) Parabolic density of states DOS models for 32 semiconductors.

Fig.(1.4) Schematic illustration of the temperature 37 dependence of dc conductivity including four different conduction mechanisms (a, b, c and d).

Fig.(1.5) I - V characteristic curve for thin film of 48 amorphous semiconductor: (a) Threshold switch (b) Memory switch.

Fig.(1.6) The absorption edge of parts a, b and c. 50

Fig.(1.7) System of an absorbing thin film on a 52 thick finite transparent substrate.

Fig.(2.1) (a) Fizeau fringes across a step on the 65 substrate. (b) The optical systems for measuring film thickness.

Fig.(2.2) A typical DTA thermogram. 67

Fig.(2.3) PANalytical philips X'Pert PRO 68 DIFFRACTOMETER.

Fig.(2.4) Transmission Electron Microscope (Type 69 JOEL 1230).

Fig.(2.5) Schematic diagram of the current–voltage 71 and the capacitance-voltage measurements system at different temperatures.

Fig.(2.6) Complex Impedance Spectroscopy 71 (HIOKI 3532-50 LCR).

Fig.(2.7). A double-beam spectrophotometer (Type 76 JASCO Corp., V-570, Ref, 1.00).

Fig.(2.8). Schematic representation of the cell used 77 for I - V measurements.

Fig.(2.9) (a) The circuit used for measuring the 78 I-V characteristics. (b) The circuit used for measuring the static I-V characteristics.

Fig.(3.1) Energy-dispersive X-ray spectroscopy 80 (EDX) of the prepared Zn_2GaTe_4 : (a) Bulk form. (b) Thin film form.

Fig.(3.2) Differential Thermal Analysis (DTA) of 81 the $ZnGa_2Te_4$ thin films.

Fig.(3.3). XRD pattern of $ZnGa_2Te_4$ in the powder 83 form.

Fig.(3.4) XRD patterns of as-deposited $ZnGa_2Te_4$ 84 film and either typical or representative samples annealed at different temperatures.

Fig.(3.5) Transmission electron microscope and the 86 corresponding electron diffraction patterns of (a) a as-deposited $ZnGa_2Te_4$ film (b-c) $ZnGa_2Te_4$ films annealed at temperatures of 523 and 573 K for 1h.

Fig.(3.6) Atomic Force Microscope (AFM) of the 87 ZnGa₂Te₄ thin film.

Fig.(3.7) The spectral behavior of the transmission 90 T and reflectance R spectra of the as-deposited $ZnGa_2Te_4$ thin films of different thicknesses.

Fig.(3.8) Spectral variation of the refractive index, n 92 and the extinction coefficient k of $ZnGa_2Te_4$ thin films as a function of wavelength. Inset: plot of $(n^2 - 1)^{-1}$ vs. photon energy squared.

Fig.(3.9) Variation of the absorption coefficient as 95 function of photon energy. Inset: the variation of absorption depth vs. photon energy.

Fig.(3.10) A plot of $(\alpha \hbar \omega)^{1/2}$ vs. photon energy of 96 ZnGa₂Te₄ thin films.

Fig.(3.11) Plots of ε' and ε'' as a function of $\hbar\omega$ for 97 ZnGa₂Te₄ thin film.

Fig.(3.12) Dependence of the relaxation time τ on 98 the photon energy $\hbar \omega$ for ZnGa₂Te₄ thin film.

Fig.(3.13) Dependence of the dissipation factor 99 $\tan \delta$ on the photon energy $\hbar \omega$ for ZnGa₂Te₄ thin film.

Fig.(3.14) Dependence of the optical conductivity 100 σ_{opt} on the photon energy $\hbar\omega$ for ZnGa₂Te₄ thin film.

Fig.(4.1) Temperature dependence of the dc 101 conductivity of $ZnGa_2Te_4$ thin film at different thicknesses.

Fig.(4.2) Dynamic (A) and Static (B) I-V 105 characteristics for ZnGa₂Te₄ memory device at room temperature.

Fig.(4.3) (a) *I-V* characteristic curves for $ZnGa_2Te_4$ 106 thin film at different elevated temperatures. (b) Plot of lnV_{th} versus 1000/T.

Fig.(4.4) Temperature dependence of threshold 107 electric field E_{th} of ZnGa₂Te₄ memory device.

Fig.(4.5) Plot of lnR versus 1000/T of $ZnGa_2Te_4$ 108 memory device.

Fig.(4.6) Plots of T_m and ΔT_b versus T_s of ZnGa₂Te₄ 110 memory device.

Fig.(5.1) (I–V) characteristics of the p-ZnGa₂Te₄/n- 112 Si HJD at different temperatures in both forward and reverse bias.

Fig.(5.2) Variation of $\ln I_f$ versus *V* for p- 114 ZnGa₂Te₄/n-Si HJD at voltage range ($0.1 \le V \le 0.5$).

Fig.(5.3) Variation of the barrier height and the 115 ideality factor values with temperature for p-ZnGa₂Te₄/n-Si HJD. Inset: Experimental barrier height versus ideality factor for p-ZnGa₂Te₄/n-Si HJD.

Fig.(5.4) The forward bias logarithmic plots of the 117 (I-V) characteristics for p-ZnGa₂Te₄/n-Si HJD at different temperatures.

Fig.(5.5) Variation of m^* values with temperature 118 for p-ZnGa₂Te₄/n-Si HJD.

Fig.(5.6) Plots of $\ln I_f$ versus 1/T for p- 120 ZnGa₂Te₄/n-Si HJD.

Fig.(5.7) Plot of $\ln I_R$ versus 1000/T for p- 124 ZnGa₂Se₄/n-Si HJD at different voltages.

Fig.(6.1). Capacitance-voltage (*C-V*) characteristics 126 of the $p-ZnGa_2Te_4/n-Si$ HJD.

Fig.(6.2).Conductance-voltage (*G-V*) characteristics 127 of the $p-ZnGa_2Te_4/n-Si$ HJD.

Fig. (6.3). The capacitance (*C*) as a function of 128 frequency for the p-ZnGa₂Te₄/n-Si HJD at different temperatures.

Fig. (6.4). The conductance (*G*) as a function of 129 frequency for the p-ZnGa₂Te₄/n-Si HJD at different temperatures.

Fig.(6.5). Variation of the density of interface state 130 as a function of frequency for the $p-ZnGa_2Te_4/n-Si$ HJD.

Fig.(6.6). $(C^{-2} - V)$ characteristics of the p- 131 ZnGa₂Te₄/n-Si HJD.

Fig.(6.7). The (R_s-V) characteristics of the p- 134 ZnGa₂Te₄/n-Si HJD.

Fig.(6.8). The series resistance R_s as a function of 135 frequency for the p-ZnGa₂Te₄/n-Si HJD at different temperatures.

Fig.(6.9). $(C_{ADJ} - V)$ characteristics of the p- 136 ZnGa₂Te₄/n-Si HJD.

Fig.(6.10). $(G_{ADJ} - V)$ characteristics of the p- 137 ZnGa₂Te₄/n-Si HJD.

Fig.(6.11). Dielectric constant-voltage (ε' -V) 139 characteristics of the p-ZnGa₂Te₄/n-Si HJD.

Fig.(6.12). Dielectric loss-voltage (ε "-V) 139 characteristics of the p-ZnGa₂Te₄/n-Si HJD.

Fig.(6.13). Variation of ε' as a function of 140 frequency of the p-ZnGa₂Te₄/n-Si HJD at different temperatures.

Fig.(6.14). Variation of ε'' as a function of 141 frequency of the p-ZnGa₂Te₄/n-Si HJD at different temperatures.

Fig.(6.15). Variation of the loss tangent $(\tan \delta)$ with 142 respect to voltage of the p-ZnGa₂Te₄/n-Si HJD.

Fig.(6.16). Variation of the ac conductivity (σ_{ac}) 143 with respect to voltage of the p-ZnGa₂Te₄/n-Si HJD.

Fig.(6.17). Variation of (σ_{ac}) as a function of 144 frequency of the p-ZnGa₂Te₄/n-Si HJD at different temperatures.

Fig.(7.1). Bode plot demonstrates the variation of 146 the magnitude $(|Z^*|)$ with the frequency for the nano-crystalline p-ZnGa₂Te₄/n-Si HJD. Inset: The variation of the magnitude $(|Z^*|)$ with the temperature.

Fig.(7.2). Bode plot demonstrates the variation of ¹⁴⁷ the phase angle (θ) for the p-ZnGa₂Te₄/n-Si HJD with the applied frequency.

Fig.(7.3). Frequency dependence of the real part of ¹⁴⁸ impedance for the p-ZnGa₂Te₄/n-Si HJD at different temperature. Inset: The variation of the real part of impedance with the temperature at frequency range 42 Hz-5 MHz.

Fig.(7.4). Frequency dependence of the imaginary part of impedance for the p-ZnGa₂Te₄/n-Si HJD different temperature. Inset: The variation of the imaginary part of impedance with the temperature at frequency range 42 Hz-5 MHz.

Fig.(7.5). Frequency dependence of the conductance ¹⁵⁰ for the p-ZnGa₂Te₄/n-Si HJD at different temperature. Inset: The variation of the conductance with the temperature at frequency range 42 Hz-5 MHz.

Fig.(7.6). a Nyquist (Cole-Cole) plot of the p-¹⁵¹ ZnGa₂Te₄/n-Si HJD at temperature range 297-473 K. Inset: a Nyquist plot at 473 K. **Fig.(7.7).** Nyquist plot arising from the Randles 152 equivalent circuit. Inset: The Randles equivalent electrical circuit.

Fig.(7.8). The variation of the bulk resistance R_b and 153 the capacitance C_b for the p-ZnGa₂Te₄/n-Si HJD with temperature.

Fig.(7.9). The dc conductivity as a function of ¹⁵⁴ temperature for the p-ZnGa₂Te₄/n-Si HJD.

Fig.(7.10). The total ac electrical conductivity at different temperatures as a function of frequency for the p-ZnGa₂Te₄/n-Si HJD.

Fig.(7.11). The ac electrical conductivity as a ¹⁵⁶ function of frequency at different temperatures for the p-ZnGa₂Te₄/n-Si HJD.

Fig.(7.12). The mean values of the frequency ¹⁵⁷ exponent *s* for the p-ZnGa₂Te₄/n-Si HJD as a function of temperature.

Fig.(7.13). The total ac electrical conductivity for ¹⁵⁸ the p-ZnGa₂Te₄/n-Si HJD as a function of temperature at frequency range (42 Hz - 5 MHz).

Fig.(7.14). The ac electrical conductivity for the p-ZnGa₂Te₄/n-Si HJD as a function of temperature at frequency range 1 kHz - 5 MHz.

Fig.(7.15). The mean value of the activation energy $\Delta E(\omega)$ for the p-ZnGa₂Te₄/n-Si *HJD* as a function of frequency.