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Abstract

Trajectory data analysis has recently become an active research area.

This is due to the large availability of mobile tracking sensors, such as

GPS-enabled smart phones. However, those GPS trackers only provide

raw trajectories (x, y, t), ignoring information about the geographical lo-

cations, transportation mode, etc. This information can contribute in

producing significant knowledge about movements, which transforms

raw trajectories into semantic trajectories. Therefore, research lately has

focused on semantic trajectories; their representation, construction, and

applications. Furthermore, advances in location acquisition and mobile

technologies also led to the addition of the location dimension to Social

Networks (SNs) and to the emergence of a newer class called Location-

based Social Networks (LBSNs). One of the key applications of semantic

trajectories is location-based recommendation, which is a main function

of LBSNs.

This research investigates the current studies on semantic trajectories

so far. We propose a new classification schema for the research efforts in

semantic trajectory construction and applications. The proposed classifi-

cation schema includes three main classes: semantic trajectory modeling,

computation, and applications. Additionally we proposed a methodol-

ogy to semantically enhance LBSNs through extracting SN Geo-tagged

media annotations and using them as location semantics. This enabled

ix



us to introduce an Interest Aware Location-based Recommender System

(IALBR) which combines the advantages of both LBSNs and SNs, in or-

der to provide interest aware location-based recommendations. This rec-

ommender system is proposed as an extension to LBSNs. It is novel in: 1)

utilizing the Geo-content in both LBSNs and SNs, 2) ranking the recom-

mendations based on a novel scoring method that maps to the user inter-

ests. It also works for passive users who are not active content contribu-

tors to the LBSN. This feature is critical to increase the number of LBSN

users. Moreover, it helps in reducing the cold start problem, which is

a common problem facing the new users of recommender systems who

get random unsatisfying recommendations. This is due to the lack of

user interests awareness, which is reliant on user history in most of the

recommenders.

We evaluated the IALBR system with a large-scale real dataset col-

lected from foursquare in respect of precision, recall & f-measure. We

also compared the results with yelp, as a ground truth system, using

metrics like the Normalized Discounted Cumulative Gain and the Mean

Absolute Error. In comparison to the baseline (i.e.Foursquare), the IALBR

recommended on average 3 times more venues with a precision of 80%

and achieved an F-measure of 0.87 (at N=15). In comparison to Yelp rat-

ings, the IALBR scored an MAE of 1.3 and an NDCG of 0.9.
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1 INTRODUCTION

1.1 Background

Around 80% of all the available data have either an explicit or an implicit

Geographical reference [1]. Explicit references are the actual Geometries

e.g., city boundaries, lakes, whereas implicit references are textual refer-

ences to Geographical objects e.g., street names, city names, etc. There

are objects that change their spatial reference with time, or so-called spa-

tiotemporal objects. With the advancement of the current GPS technolo-

gies, large-scale capture of motion of those moving spatiotemporal ob-

jects became attainable. Typical examples of moving objects include cars

and persons equipped with a GPS device, or animals wearing a transmit-

ter whose signals are captured by satellites [2]. Understanding why and

how people and animals move, which places they visit and for which

purposes, what are their activities, and which resources they use, is of

great importance for decision making in a variety of applications. Exam-

ples of those applications are location based recommenders, road traffic

monitoring, mobile health and animal data ecology which all call for

methods enabling rich and expressive representation of moving object

activities.

1.1.1 Semantic Trajectories

Semantic trajectories is a growing trend that has recently emerged in Ge-

ographic information science and spatiotemporal knowledge discovery.

It is mainly concerned with understanding the motion of the moving ob-

ject with respect to the application of interest. Moving objects generate
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1 INTRODUCTION

movement tracks over periods of time. A movement track is the motion

history of the moving object, containing the spatial values that change

with time. Trajectories are the segments of the object’s movement track

that are of interest for a given application [3]. A raw trajectory is a tra-

jectory extracted from a raw movement track containing no contextual

information that reveals motion semantics. It is a sequence of spatiotem-

poral observations (x, y, t) using Geodetic coordinates. It doesn’t contain

background contextual information (e.g., transportation means and Ge-

ographical objects) that can contribute significant semantic knowledge

about movements. Semantics refer to contextual information available

about the moving object and the Geographical objects it comes across as

it moves, apart from its mere position data. Semantic is contained both

in the Geometric properties of the spatiotemporal stream (e.g., when the

user stops/moves) as well as in the Geography on which the trajectory

passes (e.g., shops, roads). An example of a semantically enriched tra-

jectory could be the following:

(Begin, home, 9am)→ (move, road, 9am-10am, on-bus)→(stop, office, 10am-

5pm, work)→(move, road, 5pm - 5:30 pm, on-metro)→(stop, market, 5:30pm-

6pm, shopping)→(move, road, 6pm - 6:20 pm, walking)→(End, home, 6:20pm)

[4]

Semantic trajectories are able to preserve motion attributes i.e., place, ac-

tivity, transportation mean, etc. Adding semantics enhances the analysis

of data and facilitates the discovery of semantically implicit patterns and

behaviors. Semantic enrichment of trajectories happens through embed-
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