

Comparing Study of Reduction of Titanomagnetite Concentrate (Produced from Rossita Illmenite Ore) Pellets or Briquettes via Hydrogen or Coke against That Pellets or Briquettes Produced from El-Baharia Iron Ore

Thesis Submitted

For Ph.D. Degree in Chemistry

By

Atef Elamir Owis Sayed Basheer M.Sc. Chemistry, 2012

То

Chemistry Department, Faculty of Science, Ain Shams University 2016 Comparing Study of Reduction of Titanomagnetite Concentrate (Produced from Rossita Illmenite Ore) Pellets or Briquettes via Hydrogen or Coke against That Pellets or Briquettes Produced from El-Baharia Iron Ore

Thesis Submitted

For

PhD. Degree in Chemistry

By

Atef Elamir Owis Sayed Basheer

M.Sc. Chemistry, 2012

То

Chemistry Department, Faculty of Science, Ain Shams University

Supervisors:

1- Prof. Sayed Sabet Abd El-Rehim

Professor of Physical Chemistry, faculty of Science,

Ain Shams University

2- Prof. Mohamed El-Menshawi Hussein Shalabi Professor at CMRDI

3- Prof. Naglaa Ahmed El hussiny

Professor at CMRDI

<u>Approval Sheet</u>

Name : Atef Elamir Owis Sayed Basheer

Degree : Ph.D. in Chemistry

Thesis Title: Comparing Study of Reduction of Titano-magnetite Concentrate (Produced from Rossita Illmenite Ore) Pellets or Briquettes via Hydrogen or Coke against That Pellets or Briquettes Produced from El-Baharia Iron Ore

The thesis has been approved by

Supervisors:

Signature

1- Prof. Sayed Sabet Abd El-Rehim

Professor of Physical Chemistry, Faculty of

Science, Ain Shams University

2- Prof. Mohamed El-Menshawi Hussein Shalabi Professor at CMRDI

3- Prof. Naglaa Ahmed El hussiny

Professor at CMRDI

Chemistry Department Header

Abstract

Abstract

Name : Atef Elamir Owis Sayed Basheer

Degree : Ph.D. in Chemistry

Thesis Title: Comparing Study of Reduction of Titano-magnetite Concentrate (Produced from Rossita Illmenite Ore) Pellets or Briquettes via Hydrogen or Coke against That Pellets or Briquettes Produced from El-Baharia Iron Ore

The main objective of this study is to develop a comparative study of the kinetics of reduction of different sources of iron ores "titanomagnetite concentrate TMC produced from Rossetta illmenite ore and El-Baharia Iron ore" using different forms for preparing the initial material like briquettes and pellets via hydrogen or coke as a reducing agent at different temperatures.

The results indicated that the optimum conditions for the reduction process for briquettes produced from TMC are 1.5 L/min hydrogen flow rate at 950°C. The kinetic model shown by the briquettes is Diffusion through ash layer model for cylindrical briquettes with activation energy 17.17 kJ/mole, While Diffusion through thin ash layer model (Jander equation) and Diffusion through ash layer model (Crank-Ginslling-Brounshtein equation) for pellets with activation energy 23.64 and 22.67 kJ/mole respectively. Also the main crystalline phases of reduced briquettes as obtained by XRD were: metallic iron (syn. Fe), rutile (syn.TiO₂) with some traces of magnetite (Fe₃O₄). Also for TMC pellet at 2 L/min hydrogen flow rate and temperature 950°C, the main crystalline phases of reduced pellets were metallic iron, rutile with some traces of magnetite (Fe₃O₄). For TMC with coke the optimum temperature is 900 °C and stoichiometric coke =1, the kinetic model was Diffusion through ash layer model for cylindrical briquettes and activation energy = 63.68 kJ/mole. The reduction process of briquettes produced from El-Baharia iron ore was performed at 1.5 L/min hydrogen flow rate at 950°C. The kinetic model followed by the briquettes is Diffusion through ash layer model. And the activation energy = 55.63 kJ/mole. Also the main crystalline phases of reduced briquettes were metallic iron, and some traces of magnetite (Fe₃O₄). For El-Baharia iron ore pellets at 2 L/min hydrogen flow rate and 950°C the kinetic model is diffusion through thin ash layer (Jander equation) and activation energy = 56.43 kJ/mole. The main crystalline phases of reduced pellets were metallic iron, with some traces of magnetite (Fe₃O₄). And for El-Baharia reduced with coke at 1050°C and Stoichiometric coke = 1, the kinetic model was diffusion through ash layer for cylindrical briquettes and activation energy = 42.52 kJ/mole.

Acknowledgement

Acknowledgement

I really want to give my deepest gratitude to my advisor, **Dr. M.E.H Shalabi**, for his full support and confidence during the development of this study. I also want to thank **Dr. N.A. El hussiny** my co-advisor for her continuous supervision of the experimental work for this study. Thanks are due also to **Dr. S.S. Abd El-Rahim**, for his continuous supervision of this study.

I would like to thank all the Ain Shams University members and graduate students for their friendship shown during the time of this study. Finally, all my gratitude to my family: my father, my mother, my wife, my children, all my brothers and my sisters for their love, patience, encouragement and prayers.

Table of Contents

Table of Contents

Approval Sheet	iii
Abstract	iv
Acknowledgement	vi
Table of contents	vii
List of figures	xii
List of Abbreviations	xvii
Chapter One	
1. Introduction and Literature Survey	1
1.1 Introduction	1
1.1.1 Uses of different forms of pre reduced ores	3
A. Using of pellets	3
B. Using of compact forms	4
1.2 Reduction of iron ores	5
1.2.1 Reduction of hematite	5
1.2.2 Reduction of magnetite	8
1.2.3 Reduction of titanomagnetite	9
1.3 Kinetics studies	14
1.3.1 Mechanism of Gas-Solid Reactions	17
1.3.2 Models proposed for gas-solid reaction	19
1.3.2.1 Gaseous boundary layer diffusion	19
1.3.2.2 Gaseous diffusion through the pores of product layers	20
1.3.2.3 Control by chemical reaction	22
1.3.2.4 Mixed mechanism controlling	22
1.3.2.5 Topo chemical reactions."Progressive reaction model"	23
1.3.2.6 Effect of temperature	24
Chapter 2	

2. Materials and Experiments	25
2.1. Materials	25
2.2. Experimental Work	27
2.2.1. Preparation of Samples in the form of Briquettes	27
2.2.2. Preparation of Samples in the form of Pellets	28
2.3. Determination of the Quality of Briquettes or Pellets	29
2.3.1. Drop Damage Resistance Test	29
2.3.2. Compressive Strength Test	30
2.4. Reduction Procedure by Hydrogen	30
2.5. Reduction Procedure by Coke	32
Chapter 3	
3. Results and Discussion	33
3.1. Titanomagnetite Concentrates "TMC"	33
3.1.1. Briquetting of TMC	33
3.1.1.1. Effect of Applied Load on the Quality of the	
Produced Briquettes	33
3.1.1.2.Effect of Hydrogen Flow Rate on the Reducibility	
of Iron Oxides Content of Titanomagnetite	
Concentrate Briquettes at 900°C	36
3.1.1.3.Effect of Temperatures on the Reducibility of Iron	
Oxides Content of Titanomagnetite Concentrate	
Briquettes	37
3.1.1.4.Kinetics Reduction of TMC Briquette by	
Hydrogen	38
3.1.1.5.X-ray Analysis of Some Reduced Samples by	
Hydrogen	41
3.1.2. Pelletization of TMC	42
3.1.2.1.Effect of the Different Amount of Molasses on the	
Quality of the Produced Pellets	42

3.1.2.2.Effect of Hydrogen Flow Rate on the Reducibility	
of Iron Oxides Content of Titanomagnetite	
Concentrate Pellets	45
3.1.2.3.Effect of Temperatures on the Reducibility of Iron	
Oxides Content of Titanomagnetite Concentrate	
Pellets	46
3.1.2.4. The Kinetic Reduction of the TMC Pellets by	
Hydrogen	47
3.1.2.5.X-Ray Analysis of the reduced briquettes by	
Hydrogen	50
3.1.3. Reduction of TMC using coke	52
3.1.3.1.Effect of Amount of Coke Breeze Added on the	
Properties of the Briquette (green and dry	
samples)	52
3.1.3.2.Effect of amount of Coke Breeze added on the	
reduction of the TMC Briquettes	53
3.1.3.3.Effect of different temperatures on the reduction	
percentage of the TMC pressed briquetted sample	
with coke breeze	54
3.1.3.4.Reduction kinetics of reduction of TMC using coke	
breeze	55
3.1.3.5.X-Ray of the reduced briquettes by coke breeze	58
3.2. El-Baharia Iron Ore	58
3.2.1. Briquetting of El-Baharia iron ore	58
3.2.1.1.Effect of applied pressure on physical properties of	
the produced briquettes (green and dry	
samples)	58
3.2.1.2.Effect of different hydrogen flow rates on the	
percentage of reduction of the pressed briquetted at	

constant reduction temperature 900 °C	61
3.2.1.3.Effect of different temperatures on the percentage	
of reduction of the pressed briquetted sample at 1.5	
L/min hydrogen flow rate	62
3.2.1.4. The Kinetic Reduction of the Baharia iron ore	
Briquettes by Hydrogen	63
3.2.1.5.X-Ray Analysis of the Reduced Pellets by	
Hydrogen	64
3.2.2. Pelletization of El-Baharia Iron ore	65
3.2.2.1.Effect of adding molasses as binding materials on	
the quality of the produced green pellets	65
3.2.2.Effect of adding molasses as binding materials on	
the quality of the produced dried pellets	67
3.2.2.3.Effect of Hydrogen Flow rate on the reduction	
degree of El-Baharia iron ore pellets	68
3.2.2.4.Effect of Temperature on the Reducibility of Iron	
Oxides Content of El Baharia iron ore	
Pellets	69
3.2.2.5.The Kinetic Reduction of the Baharia iron ore	
Pellets by Hydrogen	70
3.2.2.6.X-Ray Analysis of the Reduced Pellets by	
Hydrogen	72
3.2.3. Reduction El-Baharia Iron Ore briquettes using coke	
breeze	74
3.2.3.1.Effect of the stoichiometric amount of coke added	
on physical properties of the produced briquettes	
(green and dry samples)	74
3.2.3.2.Effect of different stoichiometric amount of coke	
breeze on the percentage of reduction of El-Baharia	

iron ore briquettes	75
3.2.3.3.Effect of temperature on the reduction degree of the	
briquette of El-Baharia iron ore	76
3.2.3.4. Reduction Kinetics of Reduction of El-Baharia iron	
ore using coke breeze	77
3.2.3.5.X-ray of the reduction of El-Baharia iron ore	
briquette by coke breeze	79
4. Summary and conclusions	81
References	87

List of Figures