Multislice Computed Tomography in the Diagnosis of Small Bowel Obstruction

A Thesis
Submitted for Partial Fulfillment of MD degree of Radiodiagnosis

Presented By
TAMIR ABDUSSALAM MAHMOUD MOHARRUM
M.sc. Radiodiagnosis
Faculty of medicine
Ain Shams University

Supervised By
Prof. Dr. KHALID ESMAT ALLAM
Professor of Radiodiagnosis
Faculty of Medicine, Ain Shams University

Prof. Dr. SHERINE KADRY AMIN
Professor of Radiodiagnosis
Faculty of Medicine, Ain Shams University

Asst. Prof. Dr. MOHAMED EL-GHARIB ABO EL-MA’ATY
Assistant Professor of Radiodiagnosis
Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2015
ACKNOWLEDGEMENT

First and foremost, my deep gratefulness and indebtedness are to Allah, the most gracious and the most merciful.

I wish to express my deep gratitude and respect to Prof. Dr. Khalid Esmat Allam, professor of Radio-diagnosis, Faculty of Medicine, Ain Shams University, for his profound suggestion, valuable advice, continuous encouragement and guidance.

I would like to express my great thanks to Prof. Dr. Sherine Kadry Amin, professor of Radio-diagnosis, Faculty of Medicine, Ain Shams University, for her patience, sincere advice and kind support.

I would also like to thank Prof. Dr. Ahmed Mustafa, professor of Radio-diagnosis, Faculty of Medicine, Ain Shams University, for his undeniable help and support.

Lastly and not least, I send my deepest love to my parents, my wife and my little sister, for their care and everlasting support.
ABSTRACT

Purpose:
To assess and confirm the role of multislice computed tomography (MSCT) with its new applications such as reformatted images, high resolution imaging and enterography for diagnosis and its impact on management of SBO.

Materials and Methods:
40 patients were examined by CT (30 patients with high grade SBO by MSCT of the abdomen and pelvis and 10 patients with low grade SBO by MSCTE). This was done over the period of 4 years.

The age range was 14 to 93 years and 29 patients were males and 11 were females

Results:
The study revealed a very high sensitivity and specificity of the MSCT for high grade small bowel obstruction and similar results for MSCTE for low grade SBO reaching up to 100%.

Conclusion:
The MSCT and MSCTE in cases of SBO have an undeniable pivotal role in determining the course of treatment and they certainly decrease the morbidity and mortality rates caused by this illness.
ABBREVIATIONS

- 3D: Three Dimension
- AIP: Average Intensity Projection
- Cc: Cubic Centimetre
- CT: Computed Tomography
- CTA: Computed Tomography Angiography
- Fig: Figure
- GB: Gall bladder
- GE: General Electric
- GIST: Gastro-intestinal stromal tumor
- GSI: Gall Stone Ileus
- Gy : Gray
- HU : Hounsfield Unit
- IgA: Immunoglobulin A
- IV : Intra-Venous
- KVp: Kilovolt Potential
- LBO: Large bowel obstruction
- mA: mili-Ampere
- mAs: mili Ampere per second
- MDCT: Multi-Detector Computed Tomography
- mGy : Milli-Gray
- MIP: Maximum Intensity Projection
- mm: Millimetre
- MPR: Multi-Planar Reformat
- MSCT: Multi Slice Computed Tomography
- MSCTE: Multi Slice Computed Tomography Enterography
- MVO: Mesenteric Venous Occlusion
- MVT: Mesenteric venous thrombosis
- NHL: non-Hodgkin lymphoma
- No : Number
- ROI: Region of Interest
- SBO: Small Bowel Obstruction
- SMA : Superior Mesentric Artery
- SMV : Superior Mesentric Vein
- SSD: Shaded Surface Rendering
List of Figures

Fig. 1 (A&B): Transverse CT images of normal anatomy and relations of the duodenal bulb ...6

Fig. 2 (A&B): Transverse CT images of normal anatomy and relations of the 2nd part of the duodenum ..7

Fig. 3 (A&B): Transverse CT images of normal anatomy and relations of 2nd and 3rd parts of the duodenum ..7

Fig. 4 (A&B): Transverse CT images of normal anatomy of jejunal and ileal loops. ..8

Fig. 5: Loop of small intestine and mesentery from pathological specimen9

Fig. 6 (A&B): Transverse CT images of normal CT appearance of the mesentery of jejunum and ileum ...9

Fig. 7 (A&B): Coronal (A) and axial (B) reformatted images from a CT enteroclysis with positive oral contrast examination demonstrate anatomic small bowel details ...11

Fig. 8 (A&B): Transverse CT images of normal anatomy of terminal ileum and ileocecal junction ..12

Fig. 9: Ileocecal valve, interior of cecum and lower end of ascending colon by colonoscopy ...12

Fig. 10: Histology of the small intestine ...13

Fig. 11: Schematic drawing of small intestinal arterial supply ...14

Fig. 12: Diagram shows arcade pattern in jejunum and ileum ...15

Fig. 13: Sagittal 3D MSCT scan demonstrates the normal ...15

Fig. 14: Coronal 3D MSCT scan demonstrates the normal anatomy and branching pattern of the SMA ...16

Fig. 15 (A&B): Axial MSCT scans obtained at different levels demonstrate the normal appearance of the jejunal arteries ...16

Fig. 16 (A&B): A: Sagittal 3D MSCT scan demonstrates a normal variant ...17

Fig. 17: Oblique coronal CT image shows the superior mesenteric vein ...18

Fig. 18 (A&B): MSCT axial cuts (a) obtained at a higher level ...19
Fig. 19: CT criteria for SBO. Axial CT scan shows a disparity in23
Fig. 20: Simple complete SBO secondary to intussusception23
Fig. 21: Low-grade partial SBO ...24
Fig. 22: Small bowel feces sign in a patient with high-grade SBO secondary to postoperative adhesions ...25
Fig. 23: Identification of the transition point in an SBO secondary to postoperative adhesions ...26
Fig. 24: Causes of SBO. GIST = gastrointestinal stromal tumor27
Fig. 25: SBO secondary to the acute presentation of Crohn disease28
Fig. 26: SBO due to the stenotic phase of Crohn disease ..29
Fig. 27: SBO secondary to adenocarcinoma ...30
Fig. 28 (A&B): SBO secondary to adenocarcinoma of the cecum with ileocecal valve involvement ..31
Fig. 29: SBO caused by intussusception and an adhesive band32
Fig. 30: SBO secondary to radiation enteropathy33
Fig. 31: SBO secondary to a spontaneous bowel hematoma33
Figs. 32&33: (32) SBO secondary to thrombosis of the superior mesenteric vein (33) SBO due to intestinal ischemia secondary to arterial occlusion34
Fig. 34: Ischemic small bowel secondary to superior mesenteric artery thrombosis. ..35
Fig. 35: SBO secondary to adhesions after abdominal surgery36
Fig. 36: SBO secondary to an inguinal hernia ...37
Fig. 37: SBO secondary to intestinal endometriosis38
Fig. 38 (A&B): Gallstone ileus ...39
Fig. 39: SBO in a patient with distal intestinal obstruction syndrome. Axial CT scan shows markedly dilated small bowel loops with feculent contents (S)40
Fig. 40: SBO secondary to a foreign body ..41
Fig. 41(A&B): Closed-loop SBOs secondary to postoperative adhesions ..42
Fig. 42: Closed-loop SBO in a patient with intestinal torsion 43
Fig. 43 (A&B): Strangulated SBO due to adhesions................................. 43
Fig. 44 (A&B): Beam collimation in 16-section MSCT 47
Fig. 45 (A&B): Section collimation in MSCT .. 48
Fig. 46: Reconstruction of axial images from projection data 49
Fig. 47 (A&B): (A): Effects of an overlapping reconstruction interval 50
Fig. 48 (A, B&C): Anisotropic and isotropic data 51
Fig. 49: MPR. Coronal reformatted image .. 53
Fig. 50: Curved oblique reformatted image show the localized sigmoid colonic inflammation as well as pericolic inflammation 53
Fig. 51 (A&B): Effects of AIP on an image of the liver 54
Fig. 52 (A-F): Effects of MIP slab thickness on a coronal image of the abdomen .. 55
Fig. 53 (A-C): Coronal reconstructions of different contrast agents for CT enterography ... 57
Fig. (54) .. 69
Fig. (55) .. 70
Fig. (56) .. 71
Fig. (57) .. 72
Fig. (58) .. 73
Fig. (59) .. 74
Fig. 60 (A, B&C): Axial CT enterographic sections obtained in this patient 76
Fig. 61 (A, B, C&D): Axial CT enterographic sections obtained in this patient 77
Fig. 62 (A&B): Coronal (A) and sagittal (B) reformatted images in this patient ... 78
Fig. 63 (A-E): Axial CT sections obtained in this patient 79
Fig. 64 (A-E) Axial CT enterographic sections obtained in this patient 80
Fig. 65 (A-B) SBO secondary to thrombosis of the superior mesenteric vein 81
Fig. 66 (A-F) SBO secondary to a spontaneous bowel hematoma 82
Fig. 67 (A-D) Follow up CT of the same patient 83
Fig. 68 (A&B) Axial enhanced CT scan (A) and coronal reformatted image ……84
Fig. 69 (A, B, C, D): (A, B) Axial CT enterographic sections obtained in this patient ……………………………………………………………………………………85
Fig. 70 (A, B, C, D): (A, B, C) Coronal reformatted CT enterographic images ……………………………………………………………………………………………………86

List of Tables

<table>
<thead>
<tr>
<th>No.</th>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Table (1):</td>
<td>Normal small bowel measurements</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>Table (2):</td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>3</td>
<td>Table (3):</td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>4</td>
<td>Table (4):</td>
<td></td>
<td>69</td>
</tr>
<tr>
<td>5</td>
<td>Table (5):</td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>6</td>
<td>Table (6):</td>
<td></td>
<td>71</td>
</tr>
<tr>
<td>7</td>
<td>Table (7):</td>
<td></td>
<td>72</td>
</tr>
<tr>
<td>8</td>
<td>Table (8):</td>
<td></td>
<td>73</td>
</tr>
<tr>
<td>9</td>
<td>Table (9):</td>
<td></td>
<td>74</td>
</tr>
</tbody>
</table>
Index

1- Introduction ... 1
2- Aim of the Work ... 4
3- Review of Literature ... 5
 A) CT Anatomy of Small Intestine ... 6
 I. Duodenum .. 6
 II. Jejunum and Ileum ... 8
 III. Ileo-Cecal Junction .. 11
 History of the Small Intestine .. 12
 Functions of Small Intestine ... 14
 Blood Supply of the Small Intestine ... 14
 I. Arterial Supply ... 14
 II. Venous Drainage ... 17
 III. Lymphatic Drainage ... 18
 IV. Nerve Supply ... 20
 V. Embryology Basis ... 20
 B) Diagnosis of Small Bowel Obstruction .. 21
 Findings at Multidetector CT ... 22
 Is the Small Bowel Obstructed? ... 22
 How Severe Is the Obstruction? .. 24
 Where Is the Transition Point? ... 25
 What Is the Cause of the Obstruction? .. 26
 Intrinsic Causes of SBO .. 28
 Extrinsic Causes of SBO .. 35
 Intraluminal Causes of SBO .. 39
 Distal Intestinal Obstruction Syndrome .. 40
 Is the SBO Simple or Complicated? ... 41
 C) Physical Principles of MSCT .. 44
 Physical Principles of MSCT Techniques in Small Bowel Imaging: 45
 Pitch .. 45
 Collimation ... 46
 A. Beam Collimation ... 46
 B. Section Collimation ... 47
 Projection Data ... 48
 Data Reconstruction ... 49
 Section Thickness and Interval ... 49
 Nominal and Effective Section Thickness ... 50
 Volumetric Data Set .. 51
Benefits of volumetric data acquisition
A) Multi Planar Reformation
B) Curved Planar Reformation
C) Average Intensity Projection
D) Maximum Intensity Projection
E) Segmentation

Dose to Patient
MSCT & MSCTE Techniques
Types of Oral Contrast
Patient’s Preparation
Methods of Oral & IV Contrast Administration
A) Oral Contrast
If the patient will undergo MSCT
If the patient will undergo MSCTE
B) I.V. Contrast
MSCT & MSCTE Techniques
Scanning Techniques
I. Single-Phase Imaging Technique (used in both MSCT & MSCTE)
II. Multi-Phase Imaging Technique (only in MSCTE)

Patients & Methods
Patients
Methods of Study
MSCTE Examination
MSCT Examination

Results

Illustrative Cases
Case 1
Case 2
Case 3
Case 4
Case 5
Case 6
Case 7
Case 8
Case 9
Case 10

Discussion
Summary and Conclusion
References
الملخص العربي
INTRODUCTION
AND AIM OF THE WORK
INTRODUCTION

Intestinal obstruction is a mechanical or functional obstruction of the intestines, preventing the normal transit of the products of digestion. It can occur at any level distal to the duodenum of the small intestine and is a medical emergency. Symptoms include cramping pain, vomiting, obstipation, and lack of flatus. Diagnosis is clinical, confirmed by radiography. Treatment is fluid resuscitation, naso-gastric suction, and, in most cases of complete obstruction, surgery. (Ansari, 2009).

Small bowel obstruction (SBO) is a common clinical condition that occurs secondary to mechanical or functional obstruction of the small bowel, preventing normal transit of its contents. It is a frequent cause of hospitalization and surgical consultation, representing 20% of all surgical admissions for acute abdominal pain (Foster et al, 2006).

The radiologic investigation of patients with SBO and the indications for and timing of surgical intervention have changed over the past two decades (Maglinte, 2008). The old paradigm of the general surgeon when confronted with a possible SBO was to “never let the sun set or rise on an obstructed bowel.” This approach reflected the clinical and radiologic limitations of the preoperative recognition of strangulation. Nowadays, owing to the increased application of advanced modalities of abdominal imaging in the clinical context of SBO, combined with the widespread assumption that most of these conditions resolve spontaneously with nonsurgical treatment, namely naso-intestinal decompression, imaging has become the primary focus in the treatment of patients with SBO (Silva et al, 2009).
Therefore, radiology assumes considerable relevance in assisting the therapeutic decision of the surgeon in cases of SBO by addressing the following questions: Is the small bowel obstructed? How severe is the obstruction, where is it located, and what is its cause? Is strangulation present? (*Silva et al, 2009*).

Standard computed tomography (CT) emerged two decades ago as the preeminent imaging modality for preoperative evaluation of SBO, with sensitivity of 90%–96%, specificity of 96%, and accuracy of 95%. However, these results appear to apply mostly to cases of high-grade obstruction, with low-grade obstruction being a relative “blind spot” for standard CT. Newer multidetector CT scanners with multiplanar reformation capability are significantly more effective in evaluation of SBO and correlation of the obstruction with pathologic tissue damage. It is a fast examination, it usually does not require oral contrast material because the retained intraluminal fluid serves as a natural negative contrast agent and it is capable of early demonstration of strangulation (*Ros et al, 2006, Qalbani et al, 2007 and Silva et al, 2009*).
Aim of the Work

The aim of the current study is:

To assess and confirm the role of multislice computed tomography (MSCT) with its new applications such as reformatted images, high resolution imaging and enterography for diagnosis and its impact on management of SBO.
REVIEW OF LITERATURE