Scattering of halo nuclei

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN PHYSICS

> To Faculty of Science, Cairo University

> > By

Hasan Mohammed Hasan Al-Maridi

B.Sc. of physics (2004)

SUPERVISED BY

Prof. Dr. M. Y. M. Hassan

Prof. Dr. M. Y. H. Farag

Dr. E. H. Esmael

Approval sheet

Scattering of halo nuclei

Name of the candidate:

Hasan Mohammed Hasan Al-Maridi

Submitted to

Faculty of science, Cairo University

Supervision committee:

Prof. Dr. Mounir Yousef Mohamed Hassan

Professor of Theoretical Nuclear Physics, Faculty of Science, Cairo University.

Prof. Dr. Mohamed Yehia Hussein Farag

Professor of Theoretical Nuclear Physics, Faculty of Science, Cairo University.

Dr. Ehab Hanfy Esmael

Assistant Professor of Physics, Faculty of Science, Cairo University.

Prof. Dr. Hussam H. Hassan

Head of Physics Department, Faculty of Science, Cairo University. We certify that Hasan Mohammed Hasan Al-Maridi has attended and passed successfully the following postgraduate courses as a partial fulfillment of the requirements of the degree of Master of Science during the academic year 2006-2007.

- 1. Electrodynamics.
- 2. Statistical physics.
- 3. Molecular spectroscopy theory.
- 4. Group theory.
- 5. Nuclear reactions theory.
- 6. Advanced quantum mechanics.
- 7. Quantum field theory.

Prof. Dr. Hussam H. Hassan

Head of Physics Department, Faculty of Science, Cairo University.

Prof. Dr. Faten Nour Eldeen

Vice dean High studies and research Faculty of science, Cairo University.

Table of Contents

Ta	ble of	f Conte	nts	iv	
Li	st of [Fables		vi	
Li	List of Figures vi				
Aı	rticles	extract	ted from the present work	xi	
Ac	eknow	vledgem	nents	xii	
Al	ostrac	et		xiii	
1	Intr	oductio	n	1	
	1.1	Halo n	uclei	2	
		1.1.1	The first measurement	2	
		1.1.2	The concept of a neutron halo	4	
		1.1.3	Examples of halo nuclei	5	
		1.1.4	The Nuclear Matter Distribution	7	
	1.2	¹¹ Li N	lucleus	10	
	1.3	¹¹ Be N	Jucleus	12	
	1.4	Elastic	Scattering	13	
		1.4.1	Optical Model	15	
		1.4.2	Folding Model	16	
	1.5	Halo b	preakup and polarization potential	18	
2	Ana	lysis of	¹¹ Li + p elastic scattering	21	
	2.1	Introdu	uction	21	
	2.2	Forma	lism	23	
		2.2.1	Folded potential	23	
		2.2.2	Nucleon-nucleon effective interactions	24	
		2.2.3	Nuclear matter calculations	25	
		2.2.4	Nuclear density distributions	26	
		2.2.5	Method of calculation	29	
	2.3	Resul	ts and discussion	31	
		2.3.1	Real optical potentials	31	

		2.3.2 Effect of density distributions on the differential cross section	32
		2.3.3 Comparative study between M3Y and KH interactions	33
		2.3.4 Effect of using different forms of imaginary optical potentials	34
		2.3.5 Effect of the shape of spin-orbit potential	36
	2.4	Conclusions	36
3	Fold	ling model and breakup effect analysis of 11 Be + 12 C elastic scattering	51
	3.1	Introduction	51
	3.2	Folding Model Analysis for 11 Be + 12 C elastic scattering	53
	3.3	Polarization potential due to breakup	57
		3.3.1 DPP from semiclassical approximation	57
		3.3.2 Phenomenological DPP	60
		3.3.3 Microscopic DPP from the derivative of the folding potential	61
	3.4	Dynamical polarization potential for ${}^{11}\text{Be} + {}^{12}\text{C}$ system	61
	3.5	Application for two halo neutrons nuclei reactions	63
	3.6	Conclusion	65
4	Sum	mery and conclusion	76
Α	Fold	ling potential calculation	80
A	Fold A.1	ling potential calculation Single folding potential	80 80
Α	Fold A.1	ling potential calculationSingle folding potentialA.1.1M3Y interaction	80 80 80
Α	Fold A.1	ling potential calculationSingle folding potentialA.1.1M3Y interactionA.1.2KH interaction	80 80 80 81
A	Fold A.1 A.2	ling potential calculationSingle folding potentialA.1.1M3Y interactionA.1.2KH interactionDouble folding potential	 80 80 80 81 82
Α	Fold A.1 A.2 A.3	ling potential calculationSingle folding potentialA.1.1M3Y interactionA.1.2KH interactionDouble folding potentialFourier transform of the densities	 80 80 80 81 82 82
Α	Fold A.1 A.2 A.3	ling potential calculationSingle folding potentialA.1.1M3Y interactionA.1.2KH interactionDouble folding potentialFourier transform of the densitiesA.3.1One-parameter Gaussian (G) density	 80 80 80 81 82 82 83
Α	Fold A.1 A.2 A.3	ling potential calculationSingle folding potentialA.1.1M3Y interactionA.1.2KH interactionDouble folding potentialFourier transform of the densitiesA.3.1One-parameter Gaussian (G) densityA.3.2Gaussian-Gaussian (GG) density	 80 80 80 81 82 82 83 83
Α	Fold A.1 A.2 A.3	Ling potential calculationSingle folding potentialA.1.1M3Y interactionA.1.2KH interactionDouble folding potentialConstructionFourier transform of the densitiesA.3.1One-parameter Gaussian (G) densityA.3.2Gaussian-Gaussian (GO) densityA.3.3Gaussian-oscillator (GO) density	 80 80 80 81 82 82 83 83 84
A	Fold A.1 A.2 A.3	Ling potential calculationSingle folding potentialA.1.1M3Y interactionA.1.2KH interactionDouble folding potentialFourier transform of the densitiesA.3.1One-parameter Gaussian (G) densityA.3.2Gaussian-Gaussian (GG) densityA.3.3Gaussian-oscillator (GO) densityA.3.4Cluster orbital shell model approximation (COSMA) density	 80 80 80 81 82 82 83 83 84 84
AB	Fold A.1 A.2 A.3	Ling potential calculationSingle folding potentialA.1.1M3Y interactionA.1.2KH interactionDouble folding potentialConstructionFourier transform of the densitiesA.3.1One-parameter Gaussian (G) densityA.3.2Gaussian-Gaussian (GG) densityA.3.3Gaussian-oscillator (GO) densityA.3.4Cluster orbital shell model approximation (COSMA) densitySe shift calculation	 80 80 80 81 82 82 83 83 84 84 86
A B B	Fold A.1 A.2 A.3	ling potential calculation Single folding potential A.1.1 M3Y interaction A.1.2 KH interaction Double folding potential	 80 80 80 81 82 82 83 83 84 84 86

List of Tables

1.1	The separation energies of the halo nucleon(s) in the halo candidates	6
1.2	rms matter radii deduced by a Glauber-model analysis for some halo nuclei.	9
2.1	Parameters of KH interaction.	39
2.2	Incompressibility and parameters of density-dependent part $F(\rho) = c(1 - \rho)$	
	$\beta\rho)$ for M3Y and KH \textit{NN} effective interactions at saturation conditions.	39
2.3	Volume integrals and rms radii of the folded 11 Li+p potentials including	
	in-medium effect at the four densities and the M3Y and KH interactions	
	for the three energies studied	39
2.4	Renormalization factors N_R , strengths of the phenomenological potentials	
	W_v , W_s , and V_{so} , and reaction cross sections σ_R obtained by fitting the	
	elastic scattering data for ${}^{11}Li+p$ which were calculated using M3Y-A	
	and KH-A potentials with the four densities at the three energies studied	40
2.5	Parameters of volume and surface imaginary and spin-orbit potentials	40
2.6	Values of the optical potential parameters W_v , W_s , and V_{so} , the renormal-	
	ization parameters N_R , N_{IV} , and N_{IS} , and the reaction cross sections, ob-	
	tained by fitting the experimental data for the elastic 11 Li+p cross sections	
	at the energies 62, 68.4, and 75 MeV/nucleon using three methods of cal-	
	culations (see 2.2.5 for these methods). The folded potential is calculated	
	with M3Y and KH effective NN interactions and the GO density; the	
	other parameters of phenomenological potentials are given in Table 2.5.	41
3.1	Renormalization parameters of optical potential for the elastic ${}^{11}\text{Be}+{}^{12}\text{C}$	
	cross sections at 38.4 MeV/nucleon and the reaction cross sections ob-	
	tained by fitting the experimental data [64] using M3Y effective NN in-	
	teraction with different densities.	67

3.2	Renormalization parameters of the optical potential for the elastic ${}^{11}Be+{}^{12}C$	
	cross sections at 38.4 MeV/nucleon and the reaction cross sections ob-	
	tained by fitting the experimental data [64] using M3Y effective NN in-	
	teraction and G2s density with different fitting sets	67
3.3	Renormalization parameters of real N_R and imaginary potentials N_I , fit-	
	ting parameters of different forms of DPP, and the reaction cross sections,	
	obtained by fitting the elastic-scattering data [64] for ¹¹ Be+ ¹² C that were	
	calculated using G2s density and M3Y effective NN interaction at the en-	
	ergy 38.4 MeV/nucleon.	67
3.4	Renormalization parameters of real and imaginary potentials, N_R and N_I ,	
	fitting parameters of the approximated phenomenological and microscopic	
	DPP, and the reaction cross sections, obtained by fitting the experimental	
	data for ${}^{11}Li + {}^{12}C$ at 60.0 MeV/nucleon. The other parameters of Pheno.	
	DPP II are listed in Table 3.6	68
3.5	Same as Table 3.4 but for 6 He + 12 C 38.3 MeV/nucleon	68
3.6	Calculated parameters of the Pheno. DPP II for different reactions	68

List of Figures

1.1	Root mean square (rms) nuclear matter radii of lithium, helium, and beryl-	
	lium isotopes as obtained by Tanihata <i>et al.</i> [2, 3]. ¹¹ Li, ^{6,8} He, and ^{11,14} Be	
	have a much larger radius than their other respective isotopes	3
1.2	A section of the chart of nuclei showing the halo nuclei	6
1.3	The size of the halo nucleus ¹¹ Li. The matter distribution extends far out	
	from the nucleus such that the rms matter radius of ¹¹ Li is as large as	
	48 Ca, and the radius of the halo neutrons as large as for the outermost	
	neutrons in ²⁰⁸ Pb, taken from [47]	10
1.4	The one-neutron halo nucleus 11 Be	14
1.5	Single folding model	17
1.6	Double folding model.	17
2.1	Densities of ¹¹ Li used in this work	42
2.2	Real folded $^{11}Li+p$ potentials with M3Y and KH interactions using G,	
	GG, GO, and COSMA densities at energy $E = 62$ MeV/nucleon	43
2.3	Elastic ¹¹ Li+p scattering cross sections calculated using M3Y-A and KH-	
	A potentials with the four densities: G, GG, GO, and COSMA for the	
	three energies studied.	44
2.4	Real ¹¹ Li+ p optical potentials at energy $E = 62$ MeV/nucleon using the	
	Woods-Saxon phenomenological form [69] and the folding potential us-	
	ing M3Y and KH interactions with the GO density, shown in (a) linear	
	form and (b) logarithmic scale. (c) Corresponding differential cross sec-	
	tions	45
2.5	Elastic ¹¹ Li+ p scattering cross section at energy $E = 62$ MeV/nucleon	
	calculated using the M3Y-A potential with and without the surface imag-	
	inary term	46

Elastic ¹¹ Li+ p scattering cross sections calculated at the energies 62, 68.4,	
and 75 MeV/nucleon using methods (A), (B), and (C) (see 2.2.5 for these	
methods). The folded potential is calculated with M3Y and KH effective	
<i>NN</i> interactions and the GO density	47
Relation between the renormalization factors of the volume and surface	
microscopic imaginary potentials.	48
(a)Imaginary ¹¹ Li+ p optical potentials at $E = 62$ MeV/nucleon using	
Woods-Saxon form (dash-dotted line) in Ref. [69] and the microscopic	
form using M3Y (solid line) and KH (dashed line) interactions with GO	
density. (b) Corresponding differential cross sections calculated using the	
phenomenological (dash-dotted line) method and microscopic method (C).	49
Elastic ¹¹ Li+ p scattering cross section at $E = 62$ MeV/nucleon calculated	
using M3Y-A and KH-A potentials with GO density with the Woods-	
Saxon and microscopic forms and without the spin-orbit term	50
The densities of ¹¹ Be used in this work. \ldots \ldots \ldots \ldots \ldots \ldots	69
The real folded potentials of ${}^{11}\text{Be} + {}^{12}\text{C}$ system at 38.4 MeV/nucleon	
obtained using M3Y interaction with G, G1p, and G2s densities	70
Elastic-scattering cross sections for ${}^{11}\text{Be} + {}^{12}\text{C}$ at 38.4 MeV/nucleon in	
the comparison with the optical model (OM) results given by the folded	
potential (obtained with M3Y interaction) with different densities. \ldots .	71
Elastic-scattering cross sections for ${}^{11}\text{Be} + {}^{12}\text{C}$ at 38.4 MeV/nucleon in	
the comparison with the OM results given by the folded potential (ob-	
tained with M3Y interaction and G2s density) with different fits. \ldots .	71
Elastic-scattering cross sections for ${}^{11}\text{Be} + {}^{12}\text{C}$ at 38.4 MeV/nucleon in	
comparison with the OM results given by the folded potential (obtained	
with M3Y interaction and G2s density) with Pheno. DPP I and Semi.	
DPP and without DPP	72
Elastic-scattering cross sections for ${}^{11}\text{Be} + {}^{12}\text{C}$ at 38.4 MeV/nucleon in	
comparison with the OM results given by the folded potential (obtained	
with M3Y interaction and G2s density) with Pheno. DPP I and Micr. DPP	
and without DPP.	72
	Elastic ¹¹ Li+ <i>p</i> scattering cross sections calculated at the energies 62, 68.4, and 75 MeV/nucleon using methods (A), (B), and (C) (see 2.2.5 for these methods). The folded potential is calculated with M3Y and KH effective <i>NN</i> interactions and the GO density

3.7	Elastic-scattering cross sections for ${}^{11}\text{Be} + {}^{12}\text{C}$ at 38.4 MeV/nucleon in	
	comparison with the OM results given by the folded potential (obtained	
	with M3Y interaction and G2s density) with Pheno. DPP I and pheno.	
	DPP II and without DPP	73
3.8	The folded potential is calculated with M3Y interaction and G2s density	
	for ${}^{11}\text{Be} + {}^{12}\text{C}$ elastic scattering at 38.4 MeV/nucleon. The renormalized	
	potentials is represented with the dotted line. The dashed, dash-dotted,	
	dash-double dotted, and solid lines represent the total real and imaginary	
	optical potentials that are calculated by adding Pheno. DPP I, Pheno. DPP	
	II, Semi. DPP, and Micr. DPP, respectively, to the folded potential	74
3.9	Elastic-scattering cross sections for ${}^{11}Li + {}^{12}C$ at 60 MeV/nucleon in	
	comparison with the OM results given by the folded potential (obtained	
	with M3Y interaction and G1p density) with pheno. DPP II and Micr.	
	DPP and without DPP.	75

Articles extracted from the present work

- "Microscopic model analysis of ¹¹Li+p elastic scattering at 62, 68.4, and 75 MeV/nucleon "
 M. Y. M. Hassan, M. Y. H. Farag, E. H. Esmael, and H. M. Maridi Phys. Rev. C79, 014612 (2009).
- "Elastic scattering and breakup effect analysis of ¹¹Be + ¹²C at 38.4 MeV/nucleon "

M. Y. M. Hassan, M. Y. H. Farag, E. H. Esmael, and **H. M. Maridi** Phys. Rev. C79, 064608 (2009).

Acknowledgements

First of all I would like to thank ALLAH who always help me.

I am deeply indebted to **Prof. Dr. M. Y. M. Hassan** Prof. of theoretical nuclear physics at the Physics Department, Faculty of science, Cairo University for his supervision, suggesting the plan of this research, friendly encouragement, and continuous support during this research.

I wish to express my deep gratitude to **Prof. Dr. M. Y. H. Farag** Prof. of theoretical nuclear physics at the Physics Department, Faculty of science, Cairo University for his supervision, fruitful guidance, valuable helps and comments, and encouragement.

Many thanks to **Dr. E. H. Esmael** assistant professor of physics at the Physics Department, Faculty of science, Cairo University for his supervision, helpful discussion, valuable advice, and encouragement.

Finally, I would like to thank my family for their encouragement and faith and I dedicate this work to them.

Abstract

Light neutron-rich exotic nuclei at the drip line are characterized by weak binding energies that lead to "exotic" features as halos. Halo nuclei exhibit a strong cluster structure and anomalously large matter radii. The matter density of the halo nuclei has a long tail due to the fact that the separation energy of the halo neutrons is very low, so they can easily broken. These nuclei are so short lived that these cannot be used as targets. Instead, direct reactions can be done in inverse kinematics. To study the structure and reactions of the halo nuclei, it is useful to study the differential cross sections of the elastic scattering and reaction cross sections.

This thesis is concerned with the study of elastic scattering of one- and two-neutron halo nuclei. Two reactions have been considered, elastic scattering of ¹¹Li nucleus on a proton target and ¹¹Be + ¹²C elastic scattering taking into consideration breakup effect.

¹¹Li+*p* elastic scattering data at three energies, 62, 68.4, and 75 MeV/nucleon, are analyzed with density-dependent M3Y and KH effective nucleon-nucleon (*NN*) interactions in the framework of the single folding model for the optical potential. The parameters of density-dependent term are adjusted to fulfill the saturation property of nuclear matter. The optical potentials (OP's) and cross sections are calculated using four model densities of ¹¹Li: G (one-parameter Gaussian), GG (Gaussian-Gaussian), GO (Gaussian-Oscillator), and the COSMA (cluster orbital shell model approximation). Comparative studies are performed for real, imaginary, and spin-orbit potentials with the phenomenological and microscopic forms. The microscopic volume and surface imaginary potentials are constructed from both the renormalized folded potentials and their derivatives. The sensitivity of the differential cross section to the four densities is tested. It is found that the ¹¹Li+*p* elastic scattering cross sections depend strongly upon the behavior of the corresponding potentials. The GG and GO densities obtained from analyzing the data, using Glauber multiple scattering theory at high energies, give good results at energies below 100 MeV/nucleon in the framework of the folding model. The OP's calculated in the microscopic form using few parameters give good agreement with the data. Thus, it is not necessary to introduce a large number of arbitrary fitting parameters as done in the phenomenological and semimicroscopic OP's. The KH effective interaction successfully describes ${}^{11}\text{Li}+p$ elastic scattering as the popular M3Y interaction. The obtained results of the reaction cross section are in good agreement with previous calculations.

¹¹Be + ¹²C elastic-scattering data at 38.4 MeV/nucleon has been analyzed using the optical model. The optical potential is calculated in the framework of the double folding model using M3Y effective nucleon-nucleon interaction. The different models of ¹¹Be density are tested and the model that does not include the halo structure gives poor fitting with data. The breakup effect is studied by introducing a complex dynamical polarization potential (DPP) that is added to the "bare" potential. The DPP is taken in different forms that have been obtained from simple phenomenological, semiclassical approximation, and microscopic methods. The simple phenomenological DPP is approximated and related to the semiclassical approximation method. The sensitivity of the differential and reaction cross sections to these polarization potentials is tested. The microscopic DPP that has been constructed from the derivative of the folding potential describes the breakup effect well. It gives an explicit justification for the long range of the polarization potential.

Chapter 1 Introduction

The study of the properties of unstable light nuclei is considered as an important and exciting research topic in modern nuclear physics. About 280 stable or very long-lived nuclear species are found in nature, whereas predictions show that about 7000 bound nuclei should exist in the Universe, which do not decay via spontaneous particle emission. Only 2000 have been synthesized and observed to date, but very little information is available about these unstable nuclei. Their lifetimes, masses or sizes are often unknown. With access to exotic nuclei at the very limits of nuclear stability, the physics of the neutron and proton drip lines has become the focus of interest. The drip lines form the edges of the nuclear chart and indicate the point at which nuclei are no longer stable against spontaneous particle emission.

Exotic nuclei are nuclei which contain many more or many fewer neutrons than a stable isotope of the same element. They lie far away from stability line in the chart of nuclei, so they are mostly unstable against β -decay and exhibit new and exotic behavior. These nuclei have lifetimes of order of a millisecond to a second which are much longer than the time scale of nucleonic motion (10^{-23} s) inside the nucleus, so it is long enough for the exotic nuclei to posses well-defined many-body structures as bound systems of nucleons. Because the exotic nuclei are so short lived and rapidly decayed, they cannot be used as targets. Instead, direct reactions with radioactive nuclear beam can be done in inverse kinematics where the role of beam and target are interchanged.

Radioactive Nuclear Beams (RNB) as well as great progress in advanced detector