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Abstract

Light neutron-rich exotic nuclei at the drip line are characterized by weak binding energies

that lead to ”exotic” features as halos. Halo nuclei exhibit a strong cluster structure and

anomalously large matter radii. The matter density of the halo nuclei has a long tail due

to the fact that the separation energy of the halo neutrons is very low, so they can easily

broken. These nuclei are so short lived that these cannot be used as targets. Instead, direct

reactions can be done in inverse kinematics. To study the structure and reactions of the

halo nuclei, it is useful to study the differential cross sections of the elastic scattering and

reaction cross sections.

This thesis is concerned with the study of elastic scattering of one- and two-neutron

halo nuclei. Two reactions have been considered, elastic scattering of 11Li nucleus on a

proton target and 11Be + 12C elastic scattering taking into consideration breakup effect.

11Li+p elastic scattering data at three energies, 62, 68.4, and 75 MeV/nucleon, are

analyzed with density-dependent M3Y and KH effective nucleon-nucleon (NN) interac-

tions in the framework of the single folding model for the optical potential. The param-

eters of density-dependent term are adjusted to fulfill the saturation property of nuclear

matter. The optical potentials (OP’s) and cross sections are calculated using four model

densities of 11Li: G (one-parameter Gaussian), GG (Gaussian-Gaussian), GO (Gaussian-

Oscillator), and the COSMA (cluster orbital shell model approximation). Comparative

studies are performed for real, imaginary, and spin-orbit potentials with the phenomeno-

logical and microscopic forms. The microscopic volume and surface imaginary potentials

are constructed from both the renormalized folded potentials and their derivatives. The

sensitivity of the differential cross section to the four densities is tested. It is found that

the 11Li+p elastic scattering cross sections depend strongly upon the behavior of the cor-

responding potentials. The GG and GO densities obtained from analyzing the data, using

Glauber multiple scattering theory at high energies, give good results at energies below

100 MeV/nucleon in the framework of the folding model. The OP’s calculated in the

xiii



xiv

microscopic form using few parameters give good agreement with the data. Thus, it is

not necessary to introduce a large number of arbitrary fitting parameters as done in the

phenomenological and semimicroscopic OP’s. The KH effective interaction successfully

describes 11Li+p elastic scattering as the popular M3Y interaction. The obtained results

of the reaction cross section are in good agreement with previous calculations.

11Be + 12C elastic-scattering data at 38.4 MeV/nucleon has been analyzed using the

optical model. The optical potential is calculated in the framework of the double folding

model using M3Y effective nucleon-nucleon interaction. The different models of 11Be

density are tested and the model that does not include the halo structure gives poor fitting

with data. The breakup effect is studied by introducing a complex dynamical polarization

potential (DPP) that is added to the ”bare” potential. The DPP is taken in different forms

that have been obtained from simple phenomenological, semiclassical approximation, and

microscopic methods. The simple phenomenological DPP is approximated and related to

the semiclassical approximation method. The sensitivity of the differential and reaction

cross sections to these polarization potentials is tested. The microscopic DPP that has

been constructed from the derivative of the folding potential describes the breakup effect

well. It gives an explicit justification for the long range of the polarization potential.



Chapter 1

Introduction

The study of the properties of unstable light nuclei is considered as an important and

exciting research topic in modern nuclear physics. About 280 stable or very long-lived

nuclear species are found in nature, whereas predictions show that about 7000 bound

nuclei should exist in the Universe, which do not decay via spontaneous particle emission.

Only 2000 have been synthesized and observed to date, but very little information is

available about these unstable nuclei. Their lifetimes, masses or sizes are often unknown.

With access to exotic nuclei at the very limits of nuclear stability, the physics of the

neutron and proton drip lines has become the focus of interest. The drip lines form the

edges of the nuclear chart and indicate the point at which nuclei are no longer stable

against spontaneous particle emission.

Exotic nuclei are nuclei which contain many more or many fewer neutrons than a

stable isotope of the same element. They lie far away from stability line in the chart of

nuclei, so they are mostly unstable against β-decay and exhibit new and exotic behavior.

These nuclei have lifetimes of order of a millisecond to a second which are much longer

than the time scale of nucleonic motion (10−23 s) inside the nucleus, so it is long enough

for the exotic nuclei to posses well-defined many-body structures as bound systems of

nucleons. Because the exotic nuclei are so short lived and rapidly decayed, they cannot

be used as targets. Instead, direct reactions with radioactive nuclear beam can be done in

inverse kinematics where the role of beam and target are interchanged.

Radioactive Nuclear Beams (RNB) as well as great progress in advanced detector

1


