

Ain Shams University, University College for Women Department of Mathematics.

On Fuzzy Multicriteria Decision Making Problems

Thesis

Submitted in Partial Fulfillment of Requirements for the Degree of Master of Science (Pure Mathematics)

By

Nesreen Abd El Hamed Abd El Hameed Yasen

Department of Mathematics, University College for Women, Ain Shames University

Supervisors

Prof.Dr.Soraya Sherif

Prof.of Pure Mathematics, Univ.College for Women An Shames University

Prof.Dr.Mohamed.S.A.Osman

Prof. of Pure Mathematics and O.R. ,Vice Dean of the Higher Technological Institute, Tenth Of Ramadan City,

Dr.Azza.G.Hassan

Lecturer of Pure Mathematics, Univ. College for Women, Ain Shames University Cairo-Egypt

مسم الله الرحمن الرحيم

" قالوا سرحانك لا علم لنا الا ما علمتنا

اذك اذبت العليم الحكيم "

حدق الله العظيم

سورة البقرة

الاية "32 "

Acknowledgment

I would like to express my deepest thanks and gratitude to Professor Dr. Soraya Abd El-Halim Sherif, Professor of Pure Mathematics University College for Women, Ain Shams University, for her kind cooperation, encouragement ,good assistance and faithful help which have improved the final form of this thesis.

My sincere thanks are dedicated to my supervisor, Professor Dr. **Mohamed Sayed Osman**, Professor of Pure Mathematics and O.R., Vice Dean of the Higher Technological Institute, Tenth of Ramadan City at Egypt for suggesting the subject of this work, his continuous help, constructive guidance, stimulating encouragement and valuable discussions throughout the development of this thesis.

I wish to express my deep thanks to Dr. Azza Gamel Hassan Lecturer of pure Mathematics University College for Women, Ain Shams University, for her kind cooperation, encouragement and continuous supervision throughout the preparation of this thesis.

I wish also to express my thanks to Professor Dr. Samia El Azab, Head of the Department of Mthematics, College of Women, Ain Shams University, for her interest, facilities, and constant encouragement.

Finally, I would like to thank my husband most deeply for his patience and encouraging support which presented the light to complete this work.

Abstract

Nesreen Abd El Hamed .On Fuzzy Multicriteria Decision Making Problems. Master of science in Pure Mathematics, University College for Women, Ain Shams University.

The main purpose of this thesis is to study an approach for solving nonlinear goal programming with fuzzy parameters in both objective function and constraints and introducing a parametric study of this method through two different cases.

It presents an approach for solving fuzzy multiobjective linear programming problem as a VOP. Also, it presents a goal programming approach to solve the same problem and it contains a parametric study for the last two cases.

It is devoted to apply the last developed goal approach to Fuzzy continuous cooperative static games (FCCSG_s).

Moreover, it presents a decomposition algorithm to determine the bargaining set for the players in the continuous static game. In addition, it contains a formulation for new type of continuous static game.

Key words: Fuzzy Parameters, Fuzzy Multiobjective Linear Programming, Goal Programming, Parametric Study, Cooperative Games.

i

CHAPTER (V)

Conclusions and Points for Future Research

5.1 Introduction

In this chapter, the most important conclusions that can be extracted from this thesis, will be presented besides, recommendations and suggestions for further study will be introduced.

5.2 Conclusions:

The most important conclusions are summarized in the following:

- 1-An algorithm for solving nonlinear goal programming problem with fuzzy parameters (FNLGP) has been presented and a parametric analysis has been carried out on it for obtaining the stability set of the first kind through two different cases.
- 2-The α-decomposition algorithm has been proposed to solve the multiobjective linear programming problem with fuzzy parameters in the objective functions and in the constraints (FMOLP), and to treat it as a VOP. In addition, a parametric study has been introduced for the

latter to get the range of α which corresponds to the results of this study.

3-A goal programming approach has been presented for treating multiobjective linear(nonlinear) programming problems with fuzzy parameters. Moreover, a parametric analysis has been carried out on the (NLGP) problem to obtain the stability set of the first kind. Further more, the range of α values corresponding to the results of the parametric study has been determined.

- 4-The previous goal programming approach for solving (FMOP) problem has been extended to solve fuzzy continuous cooperative static games (CCSG_s).
- 5-A decomposition algorithm has been presented to determine the bargaining sets for r-player game in which cooperation among the players is possible .
- 6-A formulation has been illustrated for a new type of continuous static games in which the players are divided into two groups. In the first group each player is cooperative, whereas in the second, the players play as a goal and both are playing according to the min-max criterion.
- 7-Some numerical examples have been presented to illustrate the previously mentioned algorithm's steps.

5.3. Points for Future Research:

There are several other aspects to be explored in this area which hopefully should be solved in the future:

- Developing a goal programming approach for solving multiobjective integer nonlinear programming problems with fuzzy parameters.
- 2- The stability set of the second, third and fourth kinds could be required to continue research in this field.
- 3- Applying the developed solution approaches to solve different applications.
- 4- Approaches for solving fuzzy continuous static games should be developed.
- 5- Other types of cooperative continuous static games can be studied.

Contents

Abstract	i
Summary	ii-v
List of Abbreviations	vi-viii
List of Figures and Tables	ix
Chapter 1: Survey of Basic Concepts	1-27
1.1 Introduction	1
1.2 Vector optimization problems (VOP _S)	3
1.2.1 Problem Formulation	3
1.2.2 Different Approaches for Solving V	vector
Optimization Problems	5
1.2.3 The Kuhn-Tucker Necessary and S	ufficient
Conditions for Efficiency with	
Differentiability	9
1.2.4 The Kuhn-Tucker Necessary and S	ufficient
Conditions for Efficiency without	
Differentiability	10
1.3 Goal Programming	11
1.1.1 Basic Definitions	12
1.4 The Parametric Optimization Problem	20
1.5 Fuzzy Sets Theory	21
1.5.1 Basic Definitions	21

1.6 Continuous Static Games23
Chapter2: An Approach for Solving Nonlinear Goal
Programming Problems with Fuzzy Parameters28-45
2.1 Introduction
2.2 Problem Formulation and Solution Concepts29
2.3 Stability Set of First Kind
2.3.1The first case
2.3.2 The second case
2.4 An algorithm
2.5 An Illustrative Example40
Chapter3: An Approach for Solving MOLPPs with Fuzzy
Parameters in both Objective Functions and
Constraints
Constraints 46-88 3.1 Introduction 46
Constraints46-883.1 Introduction.463.2 An Approach for Treating MOLPPs with Fuzzy
Constraints
Constraints.46-883.1 Introduction.463.2 An Approach for Treating MOLPPs with Fuzzy Parameter in both- Objective Functions and Constraints- as VOP.47
Constraints.46-883.1 Introduction463.2 An Approach for Treating MOLPPs with Fuzzy Parameter in both- Objective Functions and Constraints- as VOP473.2.1 Problem Formulation and Solution Concept48
Constraints46-883.1 Introduction463.2 An Approach for Treating MOLPPs with Fuzzy Parameter in both- Objective Functions and Constraints- as VOP473.2.1 Problem Formulation and Solution Concept48 3.2.2 Parametric Study on the FMONLP51
Constraints.46-883.1 Introduction463.2 An Approach for Treating MOLPPs with Fuzzy Parameter in both- Objective Functions and Constraints- as VOP473.2.1 Problem Formulation and Solution Concept48 3.2.2 Parametric Study on the FMONLP51 3.2.3 α-Decomposition algorithm .
Constraints.46-883.1 Introduction463.2 An Approach for Treating MOLPPs with Fuzzy Parameter in both- Objective Functions and Constraints- as VOP473.2.1 Problem Formulation and Solution Concept48 $3.2.2$ Parametric Study on the FMONLP51 $3.2.3 \alpha$ -Decomposition algorithm
Constraints46-883.1 Introduction463.2 An Approach for Treating MOLPPs with Fuzzy Parameter in both- Objective Functions and Constraints- as VOP473.2.1 Problem Formulation and Solution Concept483.2.2 Parametric Study on the FMONLP513.2.3 α-Decomposition algorithm.523.2.4 An Illustrative Example563.3 A Goal Programming Approach for Solving MOLPPs
Constraints46-883.1 Introduction463.2 An Approach for Treating MOLPPs with Fuzzy Parameter in both- Objective Functions and Constraints- as VOP473.2.1 Problem Formulation and Solution Concept483.2.2 Parametric Study on the FMONLP513.2.3 α-Decomposition algorithm.523.2.4 An Illustrative Example563.3 A Goal Programming Approach for Solving MOLPPs with Fuzzy Parameters64

3.3.2 Stability Set of First Kind	71
3.3.3 α–Decomposition algorithm	73
3.3.4 An Illustrative Example	77
Chapter4 : Approaches for the Solution of Some Ty	pes
of Continuous Static Games	89-127
4.1 Introduction	.89
4.2 Problem Formulation and Solution Concept	90
4.3 Illustrative Numerical Example	.93
4.4 A Decomposition Algorithm to Determine the Ba	rgaining
set for r-player Game in which Cooperation am	nong the
Players is Possible	100
4.4.1 Problem Formulation and solution Concept .	101
4.4.2 The Decomposition Algorithm	103
4.4.3 Numerical Example	108
4.5 Min-Max Continuous Static Game	117
4.5.1 A problem Formulation for Another Type of	
Cooperative Continuous Static Games	118
4.5.2 Numerical example	123
Chapter5: Conclusions and Points for Future Resea	rch
5.1 Introduction	128
5.2 Conclusions	128
5.3 Points for future research	130
References13	l-141
Arabic Summary	1-5

Number of figure	Title of the figure	Page
1.1	Flowchart of the iterative approach.	16
1.2	member ship function $\mu_{\tilde{p}}(p)$ of a fuzzy number \tilde{P} .	23
2.2	Flowchart of algorithm (2.4).	38
3.1	Flowchart of α -decomposition algorithm (3.2.3).	54
3.2	Flowchart of α -decomposition algorithm (3.3.3).	75
4.1	Flowchart of the solution procedure for obtaining the bargaining set	105

List of Figures

List of Tables

Table	Title of Table	Page
number		
3.1	The structure for solving the (SNLP) model.	67
3.2	The symmetric matrix of nonconflict degree	69
3.3	Solution of the (SNLP) (3.3.3)	78
3.4	The degree of nonconflict between	81
	the objectives f_1, f_2 and f_3 .	
4.1	Solution of (SNFCCSG) problem of	95
	problem (4.3.2) .	
4.2	The degree of nonconflict between	97
	the cost functions G_1, G_2 and G_3	

List of Abbreviations

	Notations	Meaning	page
1	MCDM	multiple criteria decision making	1
2	MOP _s	multiobjective optimization problems	2
3	FMOP	fuzzy multiobjective optimization problem.	2
4	MOLP	multiobjective linear programming	3
5	VOP	vector optimization problem	3
6	MODMPs	multiobjective decision making problems	3
7	SOP	scalar optimization problems	5
8	KTCE	kuhn-Tucker condition for efficiency	10
9	KTSPCE	Kuhn-Tucker saddle point conditions for efficiency	11
10	LGP	Linear goal programming	13
11	CSG	Continuous static games	25
12	CCSG	Cooperative continuous static games	26
13	DM	Decision making	28
14	NLGP	Nonlinear goal programming	29
15	FNLGP	Fuzzy nonlinear goal programming	29
16	MOLPPs	Multiobjective linear programming problems	46
17	FMOLP	Fuzzy multiobjective linear programming	47
18	NFMOLP	Non-fuzzy multiobjective linear programming	47
19	HFGP	Hybrid fuzzy goal programming	64
20	NLMOP	Nonlinear multiobjective programming	65
21	SNLP	Single nonlinear programming	66
22	NLGP	Nonlinear goal programming	72
23	FCCSG	Fuzzy continuous static games	89
24	LSFCSG	Large scale fuzzy continuous static	90

		games	
25	NFCCSG	Non fuzzy cooperative continuous	91
		static games	
26	X	$= \{ x \in \mathbb{R}^n g_r(x) \le 0, r=1,2,,s \}$	3
27	<i>U</i> _r	Lagrange multiplier	9
28	Ε	$= \{x \in \mathbb{R}^n : Ax \le b, x \ge 0\}$	12
29	Wij	differential weights	12
30	h _{ij}	aspiration levels	12
31	d_i^-, d_i^+	deviational variables	12
32	\tilde{P}	real fuzzy number	22
33	$\mu_{\widetilde{p}}$	membership function	22
34	$\tilde{\lambda}, \tilde{eta}$	fuzzy numbers	30
35	L_{α}	The α -level set	31
36	$M(x,\beta)$	$\{x \in R^n \mid g_r(x,\beta_r) \le b_r ,$	31
		r = 1, 2,, m	
37	Ψ_{i}^{*}	the optimal value of the attainment	33
		problem p_i	
38	S	the stability set of the first kind of the	35
20		parametric problem	10
39	c_{ij} , a_{rj}	constants	48
40	e_j	A real value greater than zero	49
41	$M(x,\widetilde{eta})$	$\{x \in \mathbb{R}^n \mid g_r(x, \widetilde{\beta}_r) \le b_r , r = 1, 2, \dots, m\}$	48
42	V	The solvability set	53
43	θ_{ij}	angle between the gradients of the	68
		objectives $f_i(x)$ and $f_i(x)$	
44	D_{ir}, D_{ir}	the gradient normal vector of the	68
		objectives $f_i(x)$, $f_i(x)$	
45	$oldsymbol{ u}_{ij}$	the degree of nonconflict between the objective $f_i(x)$ and $f_i(x)$	69
44	Ui	The control vector	90
45	$G_i(.)$	The cost function of the player <i>i</i>	91
46	Ω^*	$\{u \in \mathbb{R}^{s} h_{k}(x, u, \widetilde{\beta}_{k}) \geq 0, k=1,2,\dots,m\}$	90
47	Р	the pareto –minimal control set.	100

48	P_i^*	The set of all bargaining points for	101
		player <i>i</i>	
49	P^*	The (composite) bargaining set for the	101
		game	

Summary

Multiobjective decision making (MODM) is concerned with the methods and procedures by which multiple objectives can be formally incorporated into the analytical process. The (MODM) elicits in wide variety of problems, such as goal programming, group decision problems (with several criteria), multi-attribute problems, interactive programming etc.

Modeling and optimization methods have been developed in fuzzy environments. In ([24], [25]), Lai and Hwang proposed an interactive fuzzy multiobjective decision model to solve a specific domain of multiple objective decision model. In ([5], [6], [50]), Biswal, Bit and Sakawa presented literatures and papers that deal with the solution of fuzzy multiobjective optimization problems, where many algorithms are suggested for these problems. Also, Sakawa and Yano ([50], [51], [54]), presented an interactive decision making method for multiobjective nonlinear programming problems with fuzzy parameters.

Goal programming is found to be a useful technique for modeling, solving and analyzing multicriteria decision making problems.

In ([13], [33]), Eid and Mohanty described a goal programming approach for solving the multiobjective linear programming problem. Many studies and researches still introduces the concept of Goal programming approaches and its link with multiobjective programming problems and fuzzy set theory.

ii