Routine Hysteroscopy and endometrial biopsy as basic part of Infertility Work-up

Thesis

Submitted for Partial Fulfillment of Master Degree in *Obstetrics & Gynecology*

Ву

Demiana Samir Shenouda

M.B.B.Ch. Ain Shams University

Supervised By

Dr.Ahmed Khairi Makled

Assistant Professor of Obstetric and Gynecology Faculty of Medicine – Ain Shams University

Dr.Mohamed Mahmoud Ahmed Farghali

Lecturer in Obstetric and Gynecology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain-Shams University **2009**

ACKNOWLEDGEMENT

First and foremost, I feel always indebted to **Allah**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Dr. Ahmed Mohamed Khairy Makled** Assisstant Professor of Obstetrics & Gynecology, Ain Shams University, for giving me the honor and great advantage of working under his supervision. His valuable teaching and continuing education to me extend far beyond the limits of this thesis.

My sincere thanks and utmost appreciation are humbly presented to **Dr., Mohamed Mahmoud Ahmed Farghali** Lecturer of Obstetrics & Gynecology, Ain Shams University, for his meticulous supervision, professional experience and tremendous assistance. I really appreciate his patience and support.

My deepest gratitude I extend to my whole family who offered me support, advice and motivation.

Last, but certainly not least, thanks to all the members of the early cancer detection unit and the ultrasound unit Ain shams University, where this thesis has been conducted.

Demiana Shenouda

INDEX

Title	Page
List of abbreviations	i
List of figures	ii
INTRODUCTION AND AIM OF THE WORK	1
REVIEW OF LITERATURE	5
 Unexplained infertility 	5
	49
	49
	55
	69
 Hysteroscopic examination 	108
Endometrial Sampling	148
SUBJECTS AND METHODS	165
RESULTS	184
FIGURES	214
DISCUSSION	234
SUMMARY AND CONCLUSION	238
REFERENCES	300
ARABIC SUMMARY	

2D US	Two dimensional ultrasound		
3D US		Three dimensional ultrasound	
ANA		Anti DNA	
AOA		Anti Zona and Anti ovarian	
ART		assisted reproductive technologies	
ASA		Anti Sperm	
aCL		Anticardiolipin	
aPS		Anti-Phosphatidylserine	
aPE		Anti Phosphatidylethanolamine	
AUB		Abnormal uterine bleeding	
BMI	Body mass index		
CCU		camera control unit	
CFTR		cystic fibrosis transmembrane conductance regulator	
CI		confidence interval	

List of Abbreviations

D&C	Dilatation and curettage.
D.M.	Diabetes mellitus.
DVT	Deep venous thrombosis
ET	embryo transfer
ET	Endometrial <u>thickness</u>
FISH	fluorescence in situ hybridization
FSH	follicle-stimulating hormone
HSG	Hysterosonography
HTN	Hypertension
ICSI	Intra Cytoplasmic Sperm Injection
IL12	interleukin12
IL18	interleukin18
IUA	Intrauterine adhesions
IUI	intrauterine insemination

List of abbreviations (iii)

IVF	In vitro fertilisation
LA	Lupus anticoagulant
LH	luteinizing hormone
LPD	luteal phase defect
LUF	Luteinized unrupture follicle syndrome
NNT	number needed to treat
NAD	No Abnormality Detected .
OD	outside diameter
PCO	polycystic ovary syndrome
PGD	preimplantation genetic diagnosis
PID	Pelvic inflammatory disease
RCT	randomized controlled trials
RI	resistance index.
RVF	Retroverted Uterus.
ROC	receiver-operating characteristics.
ROS	reactive oxygen species.
SIS	Saline infusion sonography.
TSH	thyroid-stimulating hormone.
TURP	transurethral resection of the prostate.
UK	United Kingdom.
USA	United States of America.

List of abbreviations (iv)

VCR	video cassette recorder.
WHO	World Health Organization

LIST OF TABLES

No.	Title	Page
1	Etiology of Infertility	6
2	Causes of Male Factor Infertility	9
3	Key Elements of Infertility Evaluation in Men	10
4	World Health Organization 1999 Seminal Fluid Analysis Reference Values	11
5	Causes of Female Factor Infertility	12
6	Key Elements of Infertility Evaluation in Women	13
8	Stages of development of the hysteroscope	61
9	Distension media for hysteroscopy	70
10	The scoring system for hysteroscopic evaluation of endometrial lesions	85
11	COMPARISON OF VARIOUS ENDOMETRIAL SAMPLERS	98
12	SENSITIVITY AND SPECIFICITY OF THE ENDOMETRIAL SAMPLING DEVICES	106
13	The distribution of age, Parity and Body mass index in 100 women with unexplained infertility.	192
14	The distribution of recurrent abortion, D&C and pelvic operations in 100 women with unexplained infertility.	193
15	. The results among 100 women with unexplained infertility.	195
16	The results of ultrasonography among 100 women with unexplained infertility.	196

No.	Title	Page
17	Mean endometrial thickness in cases with endometrial abnormality (polyp, hyperplasia) versus those with no endometrial abnormality.	197
18	Mean Resistance index in cases with endometrial abnormality versus those with no endometrial abnormality	198
19	The results of ultrasonography among 100 women with unexplained infertility.	199
20	The results of hysteroscopy among 100 women with unexplained infertility.	200
21	The time of hysteroscopy among 100 women with unexplained infertility.	201
22	Patients in whom there was disagreement between HSG and hysteroscopy.	202
23	The diagnostic accuracy of HSG versus Hysteroscopy in diagnosis of endometrial polyp.	203
24	The diagnostic accuracy of HSG versus Hysteroscopy in diagnosis of uterine anomalies.	204
25	Patients in whom there was disagreement between US and hysteroscopy.	205
26	The diagnostic accuracy of US versus Hysteroscopy in diagnosis of endometrial polyp.	206

No.	Title	Page
27	The diagnostic accuracy of US versus hysteroscopy in diagnosis of submucous myoma.	207
28	Failure rate of Pipelle biopsy and hysteroscopy in infertile patients	208
29	The results of Pipelle among 100 women with unexplained infertility.	209
30	Patients in whom there was disagreement between endometrial biopsy and hysteroscopy.	210
31	The diagnostic accuracy of EB versus Hysteroscopy in diagnosis of endometrial polyp.	211
32	The diagnostic accuracy of Hysteroscopy versus endometrial biopsy in diagnosis of endometrial hyperplasia.	212
33	The diagnostic accuracy of Hysteroscopy versus biopsy in diagnosis of endometritis.	213
34	The diagnostic accuracy of Ultrasound versus endometrial biopsy in diagnosis of endometrial hyperplasia.	214

LIST OF FIGURES

No.	Title	Page
1	Pipelle	98
2	Wallace supersample endometrial sampler	100
3	Endometrial Polyp	110
4	Mean ET cases with endometrial abnormality versus those with no endometrial abnormality.	197
5	Mean RI in cases with No endometrial abnormality versus those with endometrial abnormality	198

INTRODUCTION

The appropriateness of many investigations for subfertility will continue to be of debate for some time yet. Of most benefit to the concerned couple would be a process that is diagnostically accurate, expeditious and reliable. It should be performed with a minimum of invasion and provide both patient and clinician with useful prognostic information regarding possible future treatment (**Simon et al., 2001**).

The state of the art of the infertility workup, strange as it may appear, has never been accurately defined. A recent survey, that was designed to determine how reproductive endocrinologists practice on a daily basis, demonstrated that the five basic tests that were regarded as the cornerstone of the infertility evaluation were: semen analysis, assessment of ovulation, hysterosalpingogram, laparoscopy, and post-coital test (Glatstein et al, 1997).

The cost-effectiveness of various assisted reproduction technology strategies has been documented in the literature (Molet al., 2000). However to date there is a dearth of information relating to the cost-effectiveness of subfertility investigation. Surely the development of an appropriate model for investigation will lead to a number of benefits. Firstly, by ensuring the process is as streamlined as possible, patients will be able to access appropriate treatment earlier, thereby minimizing the risks of an agerelated fertility effect. Secondly, by ensuring the process is as cost-effective as possible, this in turn may allow more funds to be allocated to the treatment process (Simon et al., 2001).

Uterine cavity pathologies may interfere with embryo implantation (**Mittal et al., 1994**). Therefore, the evaluation of the uterine cavity is one of the basic steps in work-up of infertile women, especially before an IVF program.

Hysteroscopy has traditionally been performed as an adjunct tool to evaluate abnormalities suspected as a result of HSG evaluation. Recent studies have shown increased benefit from combining hysteroscopy and HSG in the evaluation of female infertility. Moreover, hysteroscopy is useful in identifying endometrial abnormalities not detectable on HSG (**Brown et al., 2000**).

Some authors think that hysterosalpingography should be considered an obsolete test, because it is more invasive, more dangerous and less reliable than hysteroscopy and sonohysterography in the detection of the uterine abnormalities during a routine infertility investigation (La Sala and Montanari, 2000).

During the last two decades, hysteroscopy has increasingly been gaining acceptance and is today a necessary tool in the investigation of female infertility. Hysteroscopy permits direct visualization of the cervical canal and the uterine cavity, enabling observation of the shape, relief, and vascular pattern of any abnormality (Roma et al., 2004). Since nowadays it is performed in the office, so it can be offered as a first-line diagnostic tool for evaluation of uterine abnormalities in patients with abnormal uterine bleeding and/or infertility. In addition, the hysteroscopic approach offers the possibility of obtaining endometrial/myometrial biopsies under visual control (Molinas and Campo, 2006). Introduction and Aim of the work

Makris et al., 1999 performed hysteroscopy in patients with history of abortions, infertility and repeated failure of IVF. They showed that abnormal hysteroscopic findings were observed in 40.5% of cases in which intrauterine adhesions, endometrial hyperplasia and polyps were the most common. Faghali et al, 2003 evaluated the benefits of a diagnostic hysteroscopy prior to IVF which shows that systematic hysteroscopy prior to IVF which improve the pregnancy rate. La Sala and Oliveira and their colleagues showed relation between IVF-ET failure and unsuspected intrauterine abnormalities (La Sala et a., 1998 and Oliveira et al., 2003). Introduction and Aim of the work

AIM OF THE WORK

The aim of the present study is to determine if hysteroscopy associated to endometrial biopsy should be part of the basic routine investigation of infertile women.

- (i) We will study the incidence of intrauterine abnormalities and chronic endometritis in infertile women.
- (ii) We will compare endoscopic findings with 2D Ultrasound and hysterosalpingography.