EFFECTS OF ANAESTHETIC AGENTS ON INTRACRANIAL HAEMODYNAMICS

Essay

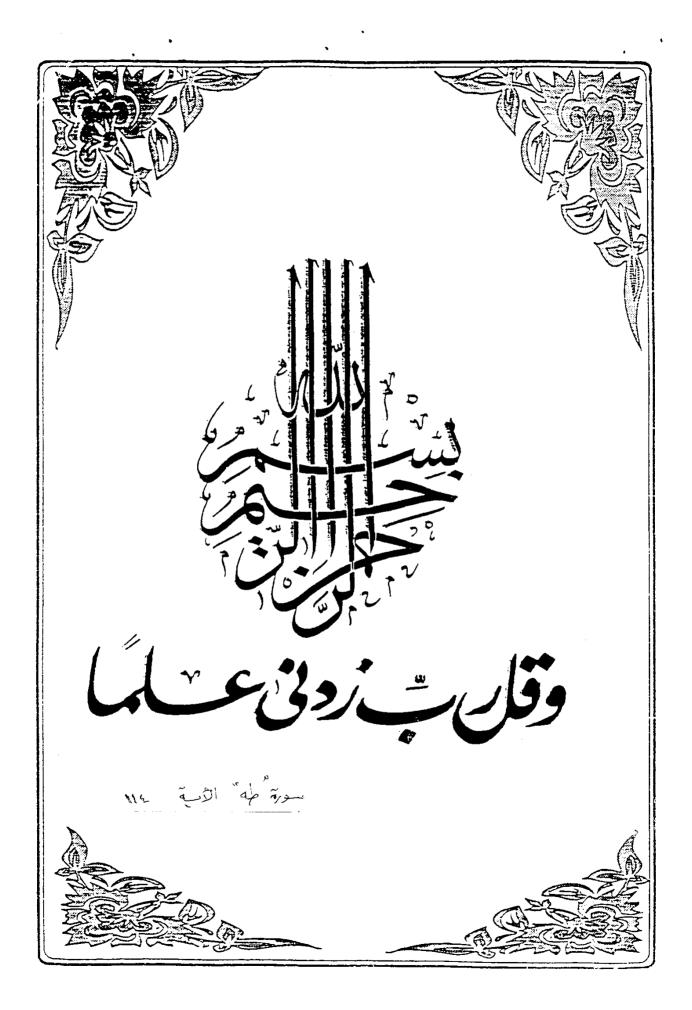
Submitted for the Partial Fulfillment of Master Degree

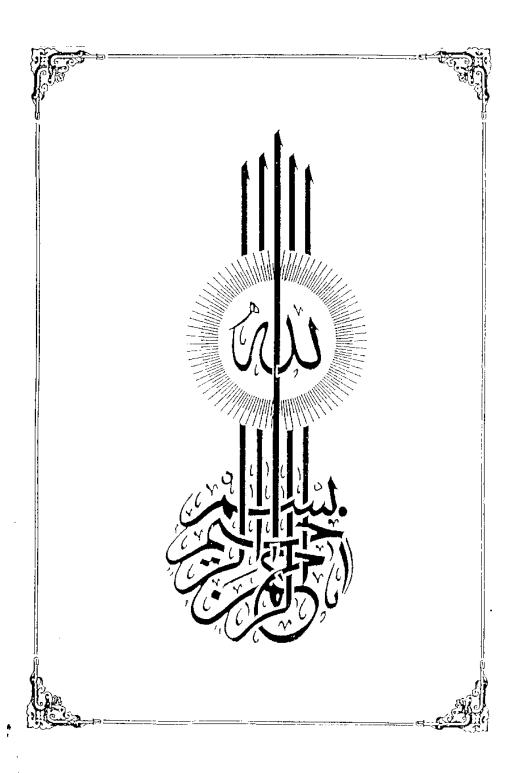
In
Anaesthesia and Intensive Care

Presented By
Ahmed Metwally Khattab
(M.B., B.Ch.)

Supervised by

Prof. Dr. Mohamed Hamed Shaker


Professor of Anaesthesia and Intensive Care Faculty of Medicine - Ain Shams University


Ass. Prof. Dr. Galal Abou El-Souod Saleh

Ass. Professor of Anaesthesia and Intensive Care Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University

1995

ACKNOWLEDGEMENT

I would like to express my deep gratitude to Professor Dr. "Mohamed Hamed Shaker", Professor of Anaesthesia and Intensive Care, Ain Shams University, for grating me the privilage of working under his supervision and for his encouragement and great support.

I am also deeply indebted to dr. "Galal Abou El-Souod Saleh", Assistant Professor of Anaesthesia and Intensive Care, Ai n Shams University, for his generous cooperation, patience, constructive criticism, and for his generosity with his time.

Lastly I would like to express my sincere gratitude to all *my Professors in Anaesthesia Department* and to all *my colleagues* who have participitated in the planning and preparation of this study.

Ahmed Metwally Khattab

* To My Family *

CONTENTS

	PAGE
* Introduction	1
* Anatomical and Physiological Considerations	4
* Effects of Intravenous Anaesthetics	69
* Effects of Inhalational Anaesthetics	83
* Effects of Muscle Relaxants	101
* Effects of Supplementary Drugs	106
* Clinical Application	114
* Summary	129
* References	136
* Arabic Summary	

LIST OF TABLES

	PAGE
1) Signs of Intracranial Hypertension	46
2) EEG Changes (activation or depression) During	
Anaesthesia	59
3) Effect of Anaesthetic Anaesthetic Agents on	
Somatosensory Evoked-Potentials	61
4) Effect of Thiopental on CMR for O ₂ in Man	71
5) Proposed Mechanisms of Barbiturate Protection	75
6) Control of ICP During Induction	122
7) Therapeutic Maneurvers to Improve Tight Brain	125

LIST OF FIGURES

	PAGE
1) The Relationship of the Four Cerebral Ventricles	6
2) Cirde of Willis	7b
3) Venous Drainage of the Brain	10b
4) Cerebral Autoregulation	17
5) The Relationship between Cerebral blood Flow and	
Arterial Respiratory Gas Tensions	20
6) Extrinsic factors Regulating C.B.F.	25
7) Circulation of CSF	32b
8) Pressure-Volume Compliance Cure	36b
9) Intracranial and Systemic Causes of Intracranial	
Hypertension	44
10) Schematic Diagram Presenting Many Therapeutic	
Considerations in Management of Patients with	
Intracranial Hypertension	54
11) I.C.P. Monitoring Techniques	67b
12) Dose- Dependent Depression of Cerebral	
Autoregulation by Volatile Anaesthetics	87

CHAPTER 1

INTRODUCTION

Introduction

The intracranial space may be regarded as a rigid container of almost a constant volume consisting of 3 compartments, namely:

- the brain tissue with its intracellular water (85%),
- the cerebral blood volume (5%)
- and the cerebro-spinal fluid (10%).

(Craen and Gelb, 1992)

"Intracranial dynamics" deal with the pattern of change and the variations in the intracranial forces and mechanics. These dynamics are determined by the former 3 compartments.

A volume change in any of these compartments requires a reciprocal change to occur in one or both of the other compartments to maintain the intracranial pressure (ICP) constant (Bode, 1990).

Increased ICP is a common finding in patients with a wide variety of neoplastic, congenital, vascular, infectious and traumatic lesions of the central nervous system.

- * The clinical importances of raised ICP, particularly during neurosurgical anaesthesia, are:
 - 1) The cerebral perfusion pressure (which is the difference between the mean arterial pressure and the intracranial

- pressure) decreases progressively until a critical point is reached at which ischaemia is produced.
- 2) With further elevation of ICP, conization of the medullary centers may occur with the resulting arrest of the vital functions.
- 3) The brain tissue may herniate through the craniotomy wound making the surgical procedures more difficult and traumatizing.

An inapropriate anaesthetic management can increase brain damage and make neurological surgery more difficult.

So, the aim of this work is to discuss the determinats of cerebral blood flow, cerebrospinal fluid dynamics, cerebral metabolic rate and consequently the intracranial pressure. Then to evaluate the effects of various anaesthetic agents on them.

In the following chapters we are going to discuss the following items:

- 1) Anatomical considerations of the brain, its blood supply and C.S.F. forming structures.
- 2) Physiology of cerebral blood flow, including the cerebral autoregulation, and the cerebral metabolism.
- 3) Cerebrospinal fluid dynamics and the intracranial pressure control; along with measurements and monitoring of the intracranial dynamics.

- 4) Effects of various anaesthetic agents and other drugs commonly used to supplement anaesthesia, particularly in neurosurgical anaesthesia, on the cerebral blood flow, cerebral metabolism and the intracranial pressure.
- 5) Putting a suggested plan to induce and maintain anaesthesia in the neurosurgical patient undergoing craniotomy, without subjecting him to the hazards of further increase in the intracranial pressure with a subsequent neurological damage and loss of blood from the craniotomy wound intraoperatively.

CHAPTER 2

ANATOMICAL AND PHYSIOLOGICAL CONSIDERATIONS

Anatomical and Physiological Considerations

- I- Brain Anatomy.
- II- Cerebral Circulation.
- III- Cerebral Metabolism.
- IV- C.S.F. Dynamics.
- V-I.C.P. Dynamics.
- VI- Measurements and Monitoring of Cerebral Haemodynamics.

I- Brain Anatomy

The brain is the greatly modified and enlarged anterior portion of the CNS. It is surrounded by 3 protective membranes (meninges); which are from inside to outside the pia mater, the arachnoid, and the dura mater, and are enclosed within the cranial cavity of the skull (Chusid, 1983).

It is formed of different parts in the form of: 1) 2 cerebral hemispheres, 2) a brain stem and 3) a cerebellum:

1) The 2 Cerebral Hemispheres: which make up the largest portion of the brain, are separated by the deep "longitudeinal cerebral fissure". Each cerebral hemisphere consists of a cerebral cortex, white mater, basal ganalia (deeply placed nuclei) and lateral ventricle.

- 2) The Brain Stem: is formed of the diencephalon (the part enclosing the 3rd ventricle and including the thalamus, geniculate bodies and the hypothalamus), midbrain, pons, and medulla oblongata.
- 3) The Cerebellum: is located in the posterior fossa of the skull behind the pons and medulla. It consists of central part called the "vermis" and 2 cerebellar hemispheres.

Brain Ventricles:

Within the brain substance is a communicating system of 4 cavities filled with cerebrospinal fluid (CSF). These 4 ventricles are designated as the 2 lateral ventricles, the third ventricle, and the fourth ventricle.

The 2 lateral ventricles are the largest of the ventricles. They are actually the cavity between the cerebral hemispheres. Each lateral ventricle has a body, an anterior, a posterior, and an inferior horn. The anterior horn lies in the forntal lobe, the posterior horn in the occipital lobe, and the inferior horn in the temporal lobe.

The third ventricle is the cavity of the diencephalon. Each lateral ventricle is connected with the third ventricle by an interventricular foramen (Foramen of Monro).