IMPACT OF FEEDING AND CLIMATIC STRESS ON SKIN AND COAT IN BALADI AND SHAMI GOATS UNDER EGYPTIAN DESERT CONDITIONS

BY

DOAA GALAL EMAM ESSA
B. Sc. Agric. Sc. (Animal Production), Minufiya University, 2004

A thesis submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY in
Agricultural Science (Animal Physiology)

Department of Animal Production
Faculty of Agriculture
Ain Shams University

2016
Approval Sheet

IMPACT OF FEEDING AND CLIMATIC STRESS ON SKIN AND COAT IN BALADI AND SHAMI GOATS UNDER EGYPTIAN DESERT CONDITIONS

BY

DOAA GALAL EMAM ESSA
B. Sc. Agric. Sc. (Animal Production), Minufiya University, 2004

This thesis for Ph. D. degree has been approved by:

Dr. Gamal Ashour Hassan ..
 Prof. of Animal Physiology, Faculty of Agriculture, Cairo University

Dr. Essam El-Din Tharwat ..
 Prof. Emeritus of Animal Physiology, Faculty of Agriculture, Ain Shams University

Dr. Mohamed Reda Anous ..
 Prof. Emeritus of Animal Husbandry, Faculty of Agriculture, Ain Shams University

Dr. Essmat Bakry Abdalla ..
 Prof. Emeritus of Animal Physiology, Faculty of Agriculture, Ain Shams University

Date of Examination: 13 / 2 / 2016
IMPACT OF FEEDING AND CLIMATIC STRESS ON SKIN AND COAT IN BALADI AND SHAMI GOATS UNDER EGYPTIAN DESERT CONDITIONS

BY

DOAA GALAL EMAM ESSA
B. Sc. Agric. Sc. (Animal Production), Menoufia University, 2004

Under the supervision of:

Dr. Essmat Bakry Abdalla
Prof. Emeritus of Animal Physiology, Department of Animal Production, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Mohamed Reda Anous
Prof. Emeritus of Animal Husbandry, Department of Animal Production, Faculty of Agriculture, Ain Shams University

Dr. Samia Abd El-mageed Hekal
Associate Researcher Prof. of Histology, Department of Wool Production and Technology, Animal and Poultry Production Division, Desert Research Center
ABSTRACT

The effect of environmental stresses (i.e. feeding levels and climatic changes) on hair coat and skin characteristics (Fibre diameter; FD, Fibre length; FL, S/P ratio and follicles dimensions: external and internal diameter and wall thickness) of Egyptian Baladi (B) and Shami (Sh) goat breeds were studied. A total number of 24 non-pregnant does (12 B and 12 Sh), with an age ranging from 3 and 5 years, were divided into two groups of equal number (6 does in each) and offered two feeding levels (50% and 100% of their maintenance requirements; MEn) during hot and cold seasons. The climatic conditions (ambient temperature, AT and relative humidity, RH) were recorded simultaneously twice a week in both seasons.

For body coat characteristics, the FD was found to be 57.13 and 37.79 mµ in cold and hot seasons, respectively. While, it was 50.76 and 46.68 mµ at 50% and 100% of MEn, respectively. The fibre length, FL was found to be 5.28 and 6.77 cm in cold and hot seasons, respectively. While, it was 6.52 and 5.46 cm at 50% and 100% of MEn, respectively. Histological investigation showed that the S/P ratio was found to be 6.81 and 7.12 in cold and hot seasons, respectively. While, it was 6.69 and 7.24 at 50% and 100% of MEn, respectively. The primary follicles dimensions were found to be 163.33, 84.96, 78.63 and 58.90 mµ at 50% of MEn and 184.33, 106.15, 78.68 and 73.59 at 100% MEn for external diameter, internal diameter, wall thickness and fibre diameter, respectively. Secondary follicles dimensions were affected by season, breed and level of feeding.

Season has a significant (P<0.05) effect on Tri-iodothyronine (T3) which, was scored 2.13 and 1.68 ng/ml at cold and hot season, respectively.
The averages for T3 were 2.03 and 1.81 ng/ml for ShG and BG goats, respectively. The average of cortisol level was 6.02 and 2.67 µg/dl for Shami and Baladi goats, respectively at feeding level of 50% of MEn. While, it was 2.59 and 3.69 µg/dl for Shami and Baladi goats, respectively at feeding level 100% of MEn. The breed has a significant effect (P<0.05) on Aldosterone (Ald) level. The average of Aldosterone level was 743.75 and 554.94 pg/ml for Shami and Baladi goats, respectively. Season has significant (p<0.05) effect on Anti-Diuretic hormone (ADH) levels. The average values were 52.74 and 86.64 pg/ml for cold and hot seasons, respectively.

This study revealed that, Baladi goats showed more ability to resist environmental stresses than Shami goats. As well, both breeds had higher ability to resist feed restriction in hot season than cold season. **Keywords:** goats; hair coat; hair follicles; skin; histology; Season; feeding level; blood parameters.
ACKNOWLEDGEMENT

First of all, thanks to Mighty GOD (ALLAH) for the continuous and persistent supply with patience and effort to produce this study.

My deepest thanks and the most sincere gratitude to my direct supervisor prof. Dr. Essmat Bakry Abdalla, Professor Emeritus of Animal Physiology, Department of Animal Production, Faculty of Agriculture, Ain Shams University, for his supervision, generous help, and continuous support and for helping me to conduct this work.

Sincere appreciation is due to Prof. Dr. Mohamed Reda Anous, Professor of Emeritus of Animal Husbandry, Department of Animal Production, Faculty of Agriculture, Ain Shams University for his supervision, guidance and encouragement in all stages. And for his help in statistical analysis of my data, and revising the manuscript are gratefully acknowledged.

I wish to express my deepest grateful to Dr. Samia A. Hekal, Department of Wool Production and Technology, Animal Production Division, Desert Research Center for her supervision and her help in histological study, and her continuous support, advice and encouragement.

Great thanks for Prof. Dr. Aisha Sied Abdo, Department of Wool Production and Technology, Animal Production Division, Desert Research Center, for planning the present study and valuable comments.

My deepest thanks to Prof. Dr. Gamal Ashour Hassan, professor of Animal Physiology, Faculty of Agriculture, Cairo University, and Great thanks to Prof. Dr Essam El-Din Tharwat, Prof. Emeritus of Animal Physiology, Faculty of Agriculture, Ain Shams University.

Thanks are due to all staff members and workers of Wool Production & Technology Department, Desert Research Center,
especially Mr. Eid M. Abd-El-Hady, for his efforts during throughout the research study.

I wish to gratitude my great father, my lovely mother, my beloved sisters, Zienab, Samah and Hanan and my dear brothers, Yasser and Ibrahim for their enormous assistance and continuous encouragement. I am really very grateful to them for their continuous invoking Allah for me.

Finally, all true words of acknowledgement are not enough to express my heartfelt gratitude to my lovely great husband Dr. Sameh T. Kassem for his kind and enormous help, continuous moral support and encouragement, and for his help in histological study and for carrying out the statistical analysis of my data and for continuous invoking Allah for me.
CONTENTS

List of Tables	iv
List of Figures	ix
List of Plates	xii
ABBREVIATION	xiv
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	4
1. Metrological data	4
2. Thermo-respiratory responses	4
2.1. Rectal temperature	4
2.2. Skin temperature	6
2.3. Respiration rate	8
2.4. Coat temperature	11
3. Hormonal profile	13
3.1. Thyroid hormones (Tri-iodothyronine and Thyroxine)	13
3.2. Cortisol	15
3.3. Aldosterone	17
3.4. Anti-Diuretic Hormone	18
4. Body coat characteristics	19
4.1. Fibre diameter	19
4.2. Fibre length	20
5. Histological structure of the skin	21
5.1. S/P ratio	24
5.2. Follicle dimensions	25
6. Histochemical investigation of the skin .. 26
6.1. General carbohydrates .. 26
6.2. General proteins .. 27

3. MATERIAL AND METHODS ... 29
3.1. Experimental animals .. 29
3.1.1. Phenotypic characteristics of goat ... 29
3.2. Management and feeding .. 30
3.3. Measurements ... 32
3.3.1. Metrological data .. 32
3.3.2. Physiological parameters ... 32
3.3.3. Blood sampling .. 33
3.3.3.1. Hormonal profile .. 33
3.3.4. Fibre sampling and its measurements ... 33
3.3.4.1. Fibre diameter .. 33
3.3.4.2. Fibre length .. 34
3.3.5. Skin samples ... 34
3.3.6. Statistical analysis .. 36

4. RESULTS AND DISCUSSION ... 37
1. Metrological data .. 37
2. Thermo-respiratory response ... 40
2.1. Rectal temperature .. 41
2.2. Coat temperature .. 43
2.3. Skin temperature .. 45
2.4. Respiration rate ... 47
3. Hormonal profile ... 48
3.1. Thyroid hormones (Tri-iodothyronine and Thyroxine) 48
3.2. Cortisol .. 54
3.3. Aldosterone .. 57
3.4. Arginine- vasopressin (ADH) 59
4. Body coat characteristics .. 61
4.1. Fibre diameter .. 61
4.2. Fibre length .. 65
5. Histological structure of the skin 70
5.1. S/P ratio ... 70
5.2. Follicle dimensions ... 76
6. Histochemistry of the hair follicles 103
6.1. General carbohydrates (PAS reaction) 106
6.2. General proteins (Bromo-phenol blue reaction) 116
5. SUMMARY AND CONCLUSION 125
6. REFERENCES .. 130
APPENDICES .. 156
ARABIC SUMMARY
LIST OF TABLES

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Chemical composition (%) of experimental feed stuffs</td>
<td>31</td>
</tr>
<tr>
<td>2.</td>
<td>Minerals composition of experimental feed stuffs</td>
<td>31</td>
</tr>
<tr>
<td>4.</td>
<td>Mean values of meteorological data recorded at 8.00 and 14.00 hr. throughout cold and hot seasons</td>
<td>38</td>
</tr>
<tr>
<td>5.</td>
<td>Means ± SE of rectal temperature and coat temperature as affected by season, breed and feeding levels at 08:00h and 14:00h</td>
<td>41</td>
</tr>
<tr>
<td>6.</td>
<td>Means ± SE of skin temperature and respiration rate as affected by season, breed and feeding levels at 08:00h and 14:00h</td>
<td>45</td>
</tr>
<tr>
<td>7.</td>
<td>Means ± SE of tri-iodothyronine (T3) and thyroxine (T4) affected by season, breed and feeding levels</td>
<td>51</td>
</tr>
<tr>
<td>8.</td>
<td>LSM±SE of T3 showing the effect of interaction between the feeding levels and both of breed and season</td>
<td>51</td>
</tr>
<tr>
<td>9.</td>
<td>LSM±SE of T4 showing the effect of interaction between the feeding levels and both of breed and season</td>
<td>52</td>
</tr>
<tr>
<td>10.</td>
<td>Means ± SE of Cortisol, Aldosterone and ADH affected by season, breed and feeding levels</td>
<td>55</td>
</tr>
<tr>
<td>11.</td>
<td>LSM±SE of Cortisol showing the effect of interaction between the feeding levels and both of breed and season</td>
<td>55</td>
</tr>
<tr>
<td>12.</td>
<td>LSM±SE of Aldosterone showing the effect of interaction between the feeding levels and both of breed and season</td>
<td>58</td>
</tr>
<tr>
<td>13.</td>
<td>LSM±SE of ADH showing the effect of interaction between the feeding levels and both of breed and season</td>
<td>60</td>
</tr>
<tr>
<td>14.</td>
<td>Means ± SE of fibre diameter affected by season, breed and feeding levels</td>
<td>62</td>
</tr>
</tbody>
</table>
15a. LSM±SE of fibre diameter (µ) showing the effect of interaction between season, breed and the feeding levels

15b. LSM±SE of fibre diameter (µ) showing the effect of interaction between the feeding levels and both of breed and season

16. Means ± SE of fibre Length affected by season, breed and type of feeding

17a. LSM±SE of fibre length (µ) showing the effect of interaction between season, breed and the feeding levels

17b. LSM±SE of fibre length showing the effect of interaction between the feeding levels and both of breed and season

18. Means ± SE of S/P ratio affected by season, breed and type of feeding

19a. LSM±SE of S/P ratio (µ) showing the effect of interaction between season, breed and the feeding levels

19b. LSM±SE of S/P ratio (µ) showing the effect of interaction between the feeding levels and both of breed and season

20. Means ± SE of primary follicles dimensions (External and internal diameter, wall thickness and fibre diameter) affected by season, breed and type of feeding

21. Means ± SE of secondary follicles dimensions (External and internal diameter, wall thickness and fibre diameter) affected by season, breed and type of feeding

22a. LSM±SE of external diameter for primary follicles (µ) showing the effect of interaction between season, breed and the feeding levels

22b. LSM±SE of external diameter for primary follicles (µ) showing the effect of interaction between the feeding levels and both of breed and season
23a. LSM±SE of internal diameter for primary follicles (µ) showing the effect of interaction between season, breed and the feeding levels

23b. LSM±SE of internal diameter for primary follicles (µ) showing the effect of interaction between the feeding levels and both of breed and season

24a. LSM±SE of wall thickness for primary follicles (µ) showing the effect of interaction between season, breed and the feeding levels

24b. LSM±SE of wall thickness for primary follicles (µ) showing the effect of interaction between the feeding levels and both of breed and season

25a. LSM±SE of fibre diameter for primary follicles showing the effect of interaction between season, breed and the type of feeding

25b. LSM±SE of fibre diameter for primary follicles (µ) showing the effect of interaction between the feeding levels and both of breed and season

26a. LSM±SE of external diameter for secondary follicles (µ) showing the effect of interaction between season, breed and the feeding levels

26b. LSM±SE of external diameter for secondary follicles (µ) showing the effect of interaction between the feeding levels and both of breed and season

27a. LSM±SE of internal diameter for secondary follicles (µ) showing the effect of interaction between season, breed and the feeding levels

27b. LSM±SE of internal diameter for secondary follicles (µ) showing the effect of interaction between the feeding levels and both of breed and season

28a. LSM±SE of wall thickness for secondary follicles (µ) showing the effect of interaction between season, breed and the feeding levels
28b. LSM±SE of wall thickness for secondary follicles (µ) showing the effect of interaction between the feeding levels and both of breed and season

29a. LSM±SE of fibre diameter for secondary follicles showing the effect of interaction between season, breed and the type of feeding

29b. LSM±SE of wall thickness for secondary follicles (µ) showing the effect of interaction between the feeding levels and both of breed and season

30 Means ± SE of general carbohydrates distribution in outer and inner root sheath of primary follicles as affected by season, breed and feeding levels

31a. LSM±SE of general carbohydrates distribution in outer root sheath of primary follicles as affected by interaction between season, breed and feeding levels

31b. LSM±SE of general carbohydrates distribution in outer root sheath of primary follicles as affected by interaction between season, breed and feeding levels

32a. LSM±SE of general carbohydrates distribution in inner root sheath of primary follicles as affected by interaction between season, breed and feeding levels

32b. LSM±SE of general carbohydrates distribution in inner root sheath of primary follicles as affected by interaction between season, breed and feeding levels

33 Means ± SE of general carbohydrates distribution in outer and inner root sheath of secondary follicles as affected by season, breed and feeding levels

34a. LSM±SE of general carbohydrates distribution in outer root sheath of secondary follicles as affected by interaction between season, breed and feeding levels

34b. LSM±SE of general carbohydrates distribution in outer root sheath of secondary follicles as affected by interaction between season, breed and feeding levels
35a. LSM±SE of general carbohydrates distribution in inner root sheath of secondary follicles as affected by interaction between season, breed and feeding levels

35b. LSM±SE of general carbohydrates distribution in inner root sheath of secondary follicles as affected by interaction between season, breed and feeding levels

36. Means ± SE of general proteins distribution in outer and inner root sheath of primary follicles as affected by season, breed and feeding levels

37a. LSM±SE of general proteins distribution in outer root sheath of primary follicles as affected by interaction between season, breed and feeding levels

37b. LSM±SE of general proteins distribution in outer root sheath of primary follicles as affected by interaction between season, breed and feeding levels

38a. LSM±SE of general proteins distribution in inner root sheath of primary follicles as affected by interaction between season, breed and feeding levels

38b. LSM±SE of general proteins distribution in inner root sheath of primary follicles as affected by interaction between season, breed and feeding levels

39. Means ± SE of general proteins distribution in outer and inner root sheath of secondary follicles as affected by season, breed and feeding levels

40a. LSM±SE of general proteins distribution in outer root sheath of secondary follicles as affected by interaction between season, breed and feeding levels

40b. LSM±SE of general proteins distribution in outer root sheath of secondary follicles as affected by interaction between season, breed and feeding levels

41a. LSM±SE of general proteins distribution in inner root sheath of secondary follicles as affected by interaction between season, breed and feeding levels