Efficacy of Surgical Radiofrequency Ablation using the Left Modified Maze Procedure in the Treatment of Chronic Atrial Fibrillation during Mitral Valve Surgery

Thesis

Submitted for the partial fulfillment of the MD degree in Cardiothoracic Surgery

> By Ismail Rafik Abd El Meguid Barrada (M.B.B.Ch., M.Sc.)

Under the supervision of

Prof. Dr. Mohsen Abd El Karim Fadala

Professor of Cardiothoracic Surgery Faculty of Medicine - Ain Shams University

Prof. Dr. Hossam Fadel El Shahawy

Professor of Cardiothoracic Surgery Faculty of Medicine - Ain Shams University

Prof. Dr. Sameh Hassan Morsy El Amin

Consultant of Cardiothoracic Surgery National Heart Institute

Dr. Waleed Ismail Kamel Ibraheem

Lecturer of Cardiothoracic Surgery Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2016

سورة طه الآيه رقم114

First of all, all gratitude is due to God almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to **Prof. Dr. Mohsen Abd El Karim Fadala**, Professor of Cardiothoracic Surgery, faculty of medicine, Ain Shams University, for his supervision, continuous help, encouragement throughout this work and tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

I would like also to express my sincere appreciation and gratitude to **Prof. Dr. Hossam Fadel El Shahawy**, Professor of Cardiothoracic Surgery, faculty of medicine, Ain Shams University, for his continuous directions and support throughout the whole work.

Really I can hardly find the words to express my gratitude to **Prof. Dr. Sameh Hassan Morsy El Amin** Consultant of Cardiothoracic Surgery National Heart Institute for his continuous directions and meticulous revision throughout the whole work. I really appreciate their patience and support.

I would like to express special thanks to **Dr. Waleed Ismail Kamel Ibraheem**, Lecturer of Cardiothoracic Surgery, Faculty of Medicine, Ain Shams University for her faithful supervision, precious help and continuous support throughout this work.

Last but not least, I dedicate this work to my family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

Contents

Contents	
List of Abbreviations	i
List of Tables	iii
List of Figures	v
List of Charts	vii
Introduction and Aim of the Work	1
Review of Literature	6
* Anatomy of the Conduction System	6
* Electrophysiology of Cardiac Conduction	17
* Pathogenesis of Atrial Fibrillation	39
* Diagnosis of Atrial Fibrillation	54
* Management of Atrial Fibrillation	66
* Surgical Management of Atrial Fibrillation	83
Patients and Methods	124
Results	132
Discussion	145
Summary	154
Conclusion	157
References	160
Arabic Summary	

List of Abbreviations

ABCs	:	Airway, breathing, and circulation
ACC	:	American College of Cardiology
ACLS	:	Advanced Cardiac Life Support
AF	:	Atrial fibrillation
AHA	:	American Heart Association
AP	:	Action potentials
APD	:	Action potential duration
BNP	:	B-type natriuretic peptide
cAMP	:	Cyclic adenosine monophosphate
CBC	:	Complete blood count
CHF	:	Congestive heart failure
COR	:	Classification of Recommendation
CRP	:	C-reactive protein
CVA	:	Cerebrovascular accident
DAD	:	Delayed afterdepolarization
DADs	:	Delayed afterdepolarizations
DC	:	Direct current
DECAAF	:	Determinant of Successful Catheter Ablation
		of Atrial Fibrillation
ECG	:	
ECM	:	Excess extracellular matrix
HF	:	Heart failure
HIFU	:	High-intensity focused ultrasound
HVA	:	High voltage-activated
ICaL	:	L-type calcium channel
ICVTS	:	Interactive cardiovascular and thoracic
		surgery
INR	:	International normalized ratio
IVC	:	Inferior vena cava
KV	:	Voltage-gated K+

i -

_

List of Abbreviations (Cont.)		
LA	:	Left atrial
LAD	:	Left atrial diameter
LOE	:	Level of Evidence
LV	:	Left ventricular
LVA	:	Low voltage-activated
LVH	:	Left ventricular hypertrophy
MI	:	Myocardial infarction
NaV	:	Voltage-gated cardiac Na+
PTCA	:	Percutaneous transluminal coronary
		angioplasty
RP	:	Refractory period
RVR	:	Rapid ventricular response
SA	:	The sinoatrial
SD	:	Mean± standard deviation
SPSS	:	Statistical Program for Social Science
SR	:	Sinus rhythm
SICTRA	:	Saline-irrigated cooled tip RF ablation
TEE	:	Transesophageal echocardiography
TTE	:	Transthoracic echocardiography
VHD	:	Valvular heart disease

Table	Title	Page
1	Selected Risk Factors and Biomarkers for AF	54
2	Definitions of AF : A simplified scheme	57
3	Applying Classification of	70
	Recommendations and Level of Evidence	
4	Common Medication Dosages for Rate Control of AF	75
5	Vaughan Williams classification	81
6	2012 HRS/EHRA/ESC Guidelines indications for the surgical ablation of AF	103
7	Preoperative demographic and patient characteristics for both groups	132
8	Operative data of both groups	133
9	Proportion of patients in SR at specified timings	135
10	Bi-atrial contractility in patients in SR in both groups	137
11	Bi-atrial contraction in relation to total number of patients in both groups	138
12	Difference in pre and post-operative left atrial volumes in Group A	139
13	Difference in pre and post-operative left atrial volumes in Group B	140
14	The relation between pre-operative left atrial volume and sinus rhythm restoration	141
15	The relation between pre-operative AF duration and restoration of sinus rhythm in both groups	142

List of tables

List of tables (Cont.)		
Table	Title	Page
16	The relation between pre-operative AF	143
	duration and restoration of sinus rhythm	
	in group A	

T :a4 af tabl α

Fig.	Title	Page
1	Illustration of the cardiac conduction system	10
2	Illustration of the conduction system with moderator band	16
3	Electrical activity in the myocardium	18
4	Phases of a typical atrial and ventricular APs and underlying currents	19
5	typical representative recordings from a single cell of INa in control and during superfusion with 10 and 30 µmol/L quinidine	22
6	typical representative recordings from a dog ventricular single cell of ICaL in control and during superfusion with 10 μ M/L dronedarone	25
7	Action potential waveforms	28
8	Rapid and slow components of IK	31
9	The inward rectifier potassium channel (IK1)	35
10	The ATP sensitive potassium channel (IKATP)	37
11	Principal atrial fibrillation (AF)- maintaining mechanisms	39
12	Mechanisms of atrial fibrillation (AF)- inducing ectopic firing	41
13	Conceptual models of reentry and implications for atrial fibrillation	44
14	Determinants of refractory period and conduction velocity	45
15	Types of atrial fibrillation (AF)- promoting remodeling	47

List of Figures

Fig.	Title	Page
16	Anatomic factors governing atrial	49
	fibrillation (AF) occurrence	
17	Dynamic interactions between atrial and	51
	ventricular function during atrial	
	fibrillation	
18	Mechanisms underlying atrial fibrillation	53
	(AF)-related thromboembolism	
19	ECG of atrial fibrillation	62
20-38	Description of the Cox-Maze III	90
	technique	
39	Medtronic radiofrequency generator	128
	Model 68000	
40	Monopolar SICTRA Medtronic probe	129
	(Cardioblate pen)	
41	Diagram of the maze lines performed in	129
	the left atrium	
42	Difference in pre and post-operative left	139
	atrial volumes in Group A	
43	Difference in pre and post-operative left	140
	atrial volumes in Group B	

List of Figures (Cont.)

List of Charts

Charts	Title	Page
1	Sinus rhythm restoration rate at specified	136
	timings	
2	Bi-atrial contractility in patients in SR	137
	in both groups	
3	Bi-atrial contractility in relation to total	138
	number of patients in both groups	
4	Difference in pre and post-operative left	141
	atrial volumes in both group	
5	The relation between pre-operative left	142
	atrial volume and sinus rhythm	
	restoration	
6	The relation between pre-operative AF	143
	duration and restoration of sinus rhythm	
	in both groups	

Introduction

Atrial fibrillation is a disorder of cardiac rhythm characterized by rapid (350-500/min), irregular disorganized atrial impulses and ineffective atrial contractions ⁽¹⁾.

Atrial fibrillation (AF) is characterized by rapid and irregular activation of the atria, leading to loss of normal sinus rhythm. In AF, various regions of the atrial wall pulse 400-600 times per minute and the ventricular rate is determined by the interaction between the atrial activity and the filtering function of the atrioventricular node. AF is the most common cardiac rhythm disturbance, affecting an estimated 2.2 million people within the United States ⁽²⁾.

Atrial fibrillation (AF) is related to poor survival rates with respect to sinus rhythm (SR) both in the general population⁽³⁾ and in patients undergoing heart surgery⁽⁴⁾.

The incidence of AF increases with age, with a prevalence of 0.5% of people in the fifth decade rising to 10% of people in the eighth decade. AF is associated with a number of predisposing cardiovascular disorders, including coronary artery disease, valvular heart disease, congestive heart failure, and hypertension. However, in up to 31% of cases AF is not associated with an underlying cardiovascular disorder⁽⁵⁾.

The prevalence of AF in patients scheduled for a mitral valve procedure is still between 30 and 84 $\%^{(6-8)}$. In the presence of permanent AF the likelihood of SR recovery after a conventional heart operation alone ranges from 4.5 to 36% and is even more unlikely in patients with left atriomegaly⁽⁴⁾.

1

Because of the loss of effective atrial contraction, stasis of blood in the atria predisposes affected patients to thromboembolism. Patients with AF have a five-fold increased risk for stroke compared to age-matched controls, and AF is responsible for as many as 15% of all strokes^(9'10).

long-term medical treatment of AF with The antiarrhythmic drug therapy is associated with a failure rate of 50% at one year and up to 84% at two years^(10,11). In addition, currently available antiarrhythmic agents are not specific for atrial activity and therefore can have profound effects on ventricular electrophysiology. The medical treatment for AF has therefore largely focused on ventricular rate control and management of thromboembolic risk with oral anticoagulants. While anti-coagulation therapy has been shown to have a decisive benefit in reducing thromboembolism in patients with chronic AF, this treatment cumbersome and exposes patients significant is to hemorrhagic risk⁽¹²⁾.

Although most symptoms of atrial fibrillation are controlled with medications, a small percentage of patients have drug intolerance or severe side effects, especially notable are the myriad effects of long term amiodarone use ^(13,14). Most worrisome are proarrhythmic potential of most antiarrhythmic drugs. Although the symptoms of atrial fibrillation may be severe and even disabling in unusual patients, the most feared complication is thromboembolism. Patients with chronic atrial fibrillation had a significantly increased mortality especially if fibrillation was accompanied by mitral stenosis. The surgical attempts to cure atrial fibrillation can be justified from the previous studies with regard to stroke risk^(15,16), decreased life expectancy⁽¹⁶⁾ and avoidance of toxic antiarrhythmic drugs^(14,17)

2

The pioneering work of Cox and colleagues has demonstrated the feasibility of treating AF surgically by interrupting the atrial pathways for multiple reentry circuits, which are necessary for the maintenance of $AF^{(18)}$. The pioneering work of Cox and colleagues culminated in the development of the Cox-Maze III procedure, which remains the gold standard for the surgical treatment of $AF^{(19)}$. The outstanding results of the Cox-Maze III procedure justify its status as the 'gold standard' surgical procedure for AF. Cox and colleagues report an overall success rate of 99% in curing patients of $AF^{(20)}$.

The Cox-Maze procedure is the most effective surgical treatment for patients with chronic atrial fibrillation^(19,21-23). The method can be combined with an operation for organic heart disease or can be performed as an isolated surgical procedure for patients with lone atrial fibrillation refractory to medical therapy^(19,21-23). However from a surgical point of view, it is a demanding procedure that prolongs significantly the aortic cross-clamp and operating time. Therefore this procedure is not widely accepted.

Intraoperative radiofrequency ablation is a novel surgical principle for the treatment of atrial fibrillation in combination with a standard open-heart operation⁽²⁴⁻³¹⁾. It is based on the original concept of the maze procedure developed and introduced by James Cox⁽²¹⁾. Application of radiofrequency current replaces the incisions and sutures of the standard maze technique. There is a spectrum of modifications regarding the types of surgical probe used for ablation, modes of application (endocardial or epicardial), and the direction of the maze lines⁽²⁴⁻³¹⁾.

Radiofrequency energy uses an alternating current from 350 kHz to 1 MHz to heat tissue, resulting in thermal