

Ain Shams University FACULTY OF ENGINEERING Automotive Engineering Department

DYNAMIC RESPONSE OF A FOUR WHEEL STEERING VEHICLE

By

Eng. Ahmad Omar Ahmad Abdo

A THESIS

Submitted in Partial Fulfilment of the Master of Science Degree in Mechanical Engineering (Automotive)

SUPERVISED BY

Prof. Dr. M.S. Dweedar Prof. Dr. Moussa M. Said Dr. Ahmed I. Abdel Aziz

CAIRO, 2011

Statement

This dissertation is submitted to Ain Shams University for the degree of Master of Science in Mechanical Engineering (Automotive). This work included in the thesis was carried out by the author from 2003 to 2010.

No part of this thesis has been submitted for the degree or a qualification at any other university or institute.

Date: / /2010

Signature

Name: Eng. A.O. Ahmad

Acknowledgment

Thanks to Allah before and after, who blessed me with dedicated supervisors, and supported me until the conclusion of this work.

I am indebted to many people for their advice, assistance and encouragement while advancing in this thesis, for my supervision and valuable comments and suggestions.

I would like to express my deep gratitude to my supervisors *Prof. Dr. M.S. Dweedar*, Prof. of Automotive Engineering *and Prof. Dr. Moussa M. Said*, for their encouragement and guidance during the accomplishment of this work.

I wish to express my great gratitude to *Dr. Ahmed I. Abdel Aziz*, Lecturer at the Automotive Engineering Department, for his invaluable discussions, guidance, support, encouragement and supervision throughout the course of this research.

I also wish to express my great thanks to *Dr. Nabeela El-Nahas*, the Head of Automotive Engineering Department, for her supervision, guidance and sincere assistance throughout the whole thesis.

Nomenclature

Symbol	Description	Unit
CG	Centre of Gravity	$[m/s^2]$
C_{f}	Front tire cornering stiffness for 4WS	[kN/rad]
C_r	Rear tire cornering stiffness for 4WS	[kN/rad]
$C_{lpha f}$	Front tire cornering stiffness for 2WS	[kN/rad]
$C_{\alpha r}$	Rear tire cornering stiffness for 2WS	[kN/rad]
F_{xf}	Front tire longitudinal force	[N]
F_{xr}	Rear tire longitudinal force	[N]
F_{yc}	Lateral force at CG	[N]
F_{yf}	Front tire lateral force	[N]
F_{yr}	Rear tire lateral force	[N]
g	Acceleration of gravity $= 9.82$	$[m/s^2]$
I_z	Mass moment of inertia of the vehicle about Z-axis	[kg.m ²]
L	Wheelbase	[m]
l_1	Distance from CG to front axle for 2WS	[m]
l_2	Distance from CG to rear axle for 2WS	[m]
l_f	Distance from CG to front axle for 4WS	[m]
l_r	Distance from CG to rear axle for 4WS	[m]
т	Vehicle curb weight	[kg]
R	Turning radius	[m]
U	Vehicle longitudinal speed for 4WS	[km/h]
V	Vehicle lateral speed for 4WS	[km/h]
V_{x}	Vehicle longitudinal speed for 2WS	[km/h]
V_y	Vehicle lateral speed for 2WS	[km/h]
• V	Lateral acceleration for 4WS	$[m/s^2]$

$\overset{\bullet}{V_y}$	Lateral acceleration for 2WS	$[m/s^2]$
α_{f}	Side slip angle of front tire	[rad]
α_r	Side slip angle of rear tire	[rad]
β	Vehicle slip angle at CG	[rad]
$\delta_{\!f}$	Front wheel angle	[rad]
$\Omega_{ m z}$	Yaw angle	[rad]
Ω	Yaw rate for 4WS	[rad/s]
$\overset{\bullet}{\Omega}_{z}$	Yaw rate for 2WS	[rad/s]

Summary

This work is concerned with the study of the effect of steering with four wheels compared to steering with front wheels only on the dynamic response of the car.

The study included the performance of road tests on two cars of the same brand and car manufacturer, one of which is steered by the conventional front wheel while the other is steered by the four wheels. The dynamic response was measured and recorded by using sensors connected to a PC system. Vehicle speed, steering wheel angle, lateral acceleration and yaw rate were measured. The different measuring instruments were assembled on a steel chassis and mounted in the luggage compartment. The tests included the measurement of the dynamic response during two manoeuvres: lane change and slalom tests.

A mathematical model was developed to simulate the dynamic performance of the cars using computer software (Matlab-Simulink).

The results showed that the lateral acceleration of the four wheeled vehicle is less than that of the two wheeled vehicle, and the yaw rate of the 4WS car is better than that of the 2WS.

The results of the mathematical model were validated to a great extend by the experimental work.

Table of Contents

		Page
Chapter (1)	INTRODUCTION	1
	1.1 STEERING	1
	1.2 CONVENTIONAL TWO WHEEL STEERING SYSTEM	2
	1.3 FOUR WHEEL STEERING SYSTEM	4
Chapter (2)	LITERATURE REVIEW	8
	2.1 DEVELOPMENT OF 4WS SYSTEMS	8
	2.2 THEORETICAL STUDIES	16
	2.3 ROAD TEST STUDIES	25
	2.4 THEORETICAL AND ROAD TEST STUDIES	28
	2.5. AIM OF THE PRESENT WORK	33
Chapter (3)	EXPERIMENTAL WORK	34
	3.1. INTRODUCTION	34
	3.2 MANOEUVRES	34
	3.2.1 High Speed Lane Change	34
	3.2.2 Low Speed Slalom	37
	3.3 MEASUREMENT FACILITIES	37
	3.3.1 Yaw Rate Measuring Device	42
	3.3.2 Lateral Acceleration Measuring Device	44
	3.3.3 Steering Wheel Angle Sensor	49
	3.3.4 Engine Speed Sensor	49
	3.4 RECORDING OF MEASURED DATA	52
	3.5 CHOICE OF TESTED VEHICLES	59
	3.6 TEST CONDITIONS	61
	3.7 TEST PROCEDURES	61
	3.7.1 Before The Test	62

	3.7.2 After The Test	62
	3.8 RESULTS OF THE EXPERIMENTAL WORK	63
	3.8.1 Results of The 2WS Car	63
	3.8.1.1 Results of Lane Change Manoeuvre	63
	3.8.1.2 Results of Slalom Manoeuvre	65
	3.8.2 Results of The 4WS Car	67
	3.8.2.1 Results of Lane Change Manoeuvre	67
	3.8.2.2 Results of Slalom Manoeuvre	69
Chapter (4)	Mathematical Model AND RESULTS	72
	4.1 INTRODUCTION	72
	4.2 TWO WHEEL STEERING TRANSIENT	72
	RESPONSE CHARACTERISTICS 4.3 FOUR WHEEL STEERING TRANSIENT RESPONSE CHARACTERISTICS	75
	4.4 RESULTS OF THE THEORETICAL WORK	78
		78
	4.4.1 Results of The 2WS Car	78
	4.4.1.1 Results of Lane Change Manoeuvre	
	4.4.1.2 Results of Slalom Manoeuvre	79
	4.4.2 Results of The 4WS Car	81
	4.4.2.1 Results of Lane Change Manoeuvre	81
	4.4.2.2 Results of Slalom Manoeuvre	83
Chapter (5)	DISCUSSIONS OF RESULTS	84
	5.1 INTRODUCTION	84
	5.2 DISCUSSION OF EXPERIMENTAL RESULTS	84
	5.2.1 Comparison Between Dynamic Response of 2WS and 4WS Cars	84
	5.2.1.1 Lane Change Manoeuvre	84
	i. Yaw Rate Response	84
	ii. Lateral Acceleration Response	88
	iii. Comparison between 2WS and 4WS Dynamic Responses	89

		5.2.1.2	Slalom Manoeuvre	93
			i. Yaw Rate Response	93
			ii. Lateral Acceleration Response	97
			iii. Comparison between 2WS and 4WS Dynamic Responses	98
	5.2.2	Handlin Manoeu	ng Behaviour During Different	101
		5.2.2.1	Two Wheel Steering Car	101
			i. Yaw Rate	102
			ii. Lateral Acceleration	102
		5.2.2.2	Four Wheel Steering Car	102
			i. Yaw Rate	102
			ii. Lateral Acceleration	102
5.3	DISCU	USSION	OF THEORETICAL RESULTS	103
	5.3.1	-	rison Between Dynamic Responses and 4WS Cars	103
		5.3.1.1	Two Wheel Steering Car	103
			i. Lane Change Manoeuvre	103
			ii. Slalom Manoeuvre	104
		5.3.1.2	Four Wheel Steering Car	104
			i. Lane Change Manoeuvre	105
			ii. Slalom Manoeuvre	105
		5.3.1.3	Comparison between 2WS and 4WS Dynamic Responses	106
			i. Lane Change Manoeuvre	106
			ii. Slalom Manoeuvre	108
5.4			N BETWEEN EXPERIMENTAL ETICAL RESULTS	109
	5.4.1	Lane C	hange Manoeuvre	109
		5.4.1.1	Yaw Rate	110
		5.4.1.2	Lateral Acceleration	111

	5.4.2 Slalom Manoeuvre	113
	5.4.2.1 Yaw Rate	113
	5.4.2.2 Lateral Acceleration	115
Chapter (6)	CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK	117
	6.1 CONCLUSIONS	117
	6.2 RECOMMENDATIONS FOR FUTURE WORK	119
REFERENCE	'S	120
APPENDICES	5	
APPENDIX A	TEST VEHICLES SPECIFICATIONS	123
APPENDIX B	INSTRUMENTS SPECIFICATIONS	132
APPENDIX C	CALIBRATION	141
ARABIC SUM	IMARY	

List of Figures

Figure 2-1 Driver-Vehicle System of 2WS Vehicle in Turning	12
Figure 2-2 Driver-Vehicle System of 4WS Vehicle in Turning	13
Figure 3-1 Lane Change Test Course	35
Figure 3-2 Slalom Test Course	38
Figure 3-3 Schematic Diagram of Test Apparatus Wiring Connection	40
Figure 3-4 Gyroscope Illustration	42
Figure 3-5 Multi-Turn Potentiometer	43
Figure 3-6 Yaw Rate Sensor Schematic Diagram	45
Figure 3-7 Single Turn Rotary Potentiometer	47
Figure 3-8 Lateral Acceleration Sensor Schematic Diagram	48
Figure 3-9 Steering Wheel Sensor Schematic Diagram	50
Figure 3-10 Petrol Engine Speed Sensor Circuit Diagram	52
Figure 3-11 Connection of Measuring Sensors to Computer System	53
Figure 3-12 AT-MIO-16X I/O Connector	55
Figure 3-13 Adaptor for AT-MIO-16X I/O Connector	56
Figure 3-14 Voltage Regulator (Voltage Stabilizer)	57
Figure 3-15 UPS/Electric Inverter	58
Figure 3-16 General Layout of Test Apparatus	60
Figure 3-17 Variation of 2WS Vehicle Dynamics with Time	63
Figure 3-18 Variation of Yaw Angle with Time	64
Figure 3-19 Variation of Lateral Acceleration with Time	65
Figure 3-20 Variation of 2WS Vehicle Dynamics with Time	65

Figure 3-21 Variation of Yaw Angle with Time	66
Figure 3-22 Variation of Lateral Acceleration with Time	67
Figure 3-23 Variation of 4WS Vehicle Dynamics with Time	68
Figure 3-24 Variation of Yaw Angle with Time	68
Figure 3-25 Variation of Lateral Acceleration with Time	69
Figure 3-26 Variation of 4WS Vehicle Dynamics with Time	70
Figure 3-27 Variation of Yaw Angle with Time	70
Figure 3-28 Variation of Lateral Acceleration with Time	71
Figure 4-1 Analysis of plane motions of a vehicle using axes fixed to vehicle body	72
Figure 4-2 Bicycle Model for 2WS Vehicle	73
Figure 4-3 Bicycle Model for 4WS Vehicle	75
Figure 4-4 Variation of Yaw Rate with Time	78
Figure 4-5 Variation of Lateral Acceleration with Time	79
Figure 4-6 Variation of Yaw Rate with Time	80
Figure 4-7 Variation of Lateral Acceleration with Time	80
Figure 4-8 Variation of Yaw Rate with Time	81
Figure 4-9 Variation of Lateral Acceleration with Time	82
Figure 4-10 Variation of Yaw Rate with Time	82
Figure 4-11 Variation of Lateral Acceleration with Time	83
Figure 5-1 Variation of SW Angle and Yaw Angle with Time - 2WS	85
Figure 5-2 Variation of SW Angle and Yaw Rate with Time - 2WS	86
Figure 5-3 Variation of SW Angle and Yaw Angle with Time - 4WS	86
Figure 5-4 Variation of SW Angle and Yaw Rate with Time - 4WS	87

Figure 5-5 Variation of SW Angle and Lateral Acceleration with Time - 2WS	88
Figure 5-6 Variation of SW Angle and Lateral Acceleration with Time - 4WS	89
Figure 5-7 Comparison between SW Angle Changes for 2WS and 4WS	90
Figure 5-8 Comparison between Yaw Angle Responses for 2WS and 4WS	91
Figure 5-9 Comparison between Yaw Rate Responses for 2WS and 4WS	92
Figure 5-10 Comparison between Lateral Acceleration Responses for 2WS and 4WS	93
Figure 5-11 Variation of SW Angle and Yaw Angle with time – 2WS	94
Figure 5-12 Variation of SW Angle and Yaw Rate with Time – 2WS	95
Figure 5-13 Variation of SW Angle and Yaw Angle with time – 4WS	95
Figure 5-14 Variation of SW Angle and Yaw Rate with Time – 4WS	96
Figure 5-15 Variation of SW Angle and Lateral Acceleration with time - 2WS	97
Figure 5-16 Variation of SW Angle and Lateral Acceleration with time - 4WS	98
Figure 5-17 Comparison between SW Angle Changes for 2WS and 4WS	99
Figure 5-18 Comparison between Yaw Angle Responses for 2WS and 4WS	100
Figure 5-19 Comparison between Yaw Rate Responses for 2WS and 4WS	100
Figure 5-20 Comparison between Lateral Acceleration Responses for 2WS and 4WS	101
Figure 5-21 Variation of Yaw Rate and Lateral Acceleration with Time-Lane Change	103
Figure 5-22 Variation of Yaw Rate and Lateral Acceleration with Time – Slalom	104
Figure 5-23 Yaw Rate and Lateral Acceleration with Time for 4WS	105
Figure 5-24 Variation of Yaw Rate and Lateral Acceleration with Time – Slalom	106
Figure 5-25 Comparison between Yaw Rate Responses for 2WS & 4WS – LC	107

Figure 5-26 Comparison between Lateral Acceleration Responses for 2WS & 4WS - LC	107
Figure 5-27 Comparison between Yaw Rate Responses for 2WS & 4WS – Slalom	108
Figure 5-28 Comparison between Lateral Acceleration Responses for 2WS & 4WS - Slalom	109
Figure 5-29 Comparison between Yaw Rate Responses for 2WS – LC	110
Figure 5-30 Comparison between Yaw Rate Responses for 4WS – LC	111
Figure 5-31 Comparison between Lateral Acceleration Responses for 2WS – LC	112
Figure 5-32 Comparison between Lateral Acceleration Responses for 4WS – LC	112
Figure 5-33 Comparison between Yaw Rate Responses for 2WS - Slalom	114
Figure 5-34 Comparison between Yaw Rate Responses for 4WS - Slalom	114
Figure 5-35 Comparison between Lateral Acceleration Responses for 2WS – Slalom	115
Figure 5-36 Comparison between Lateral Acceleration Responses for 4WS – Slalom	116

List of Plates

Page

Plate 3-1 Lane Change Test Course	36
Plate 3-2 Slalom Test Course	39
Plate 3-3 Carrying Chassis in Luggage Compartment	41
Plate 3-4 Yaw Rate Measuring Device	46
Plate 3-5 Lateral Acceleration Measuring Device	47
Plate 3-6 Steering Wheel Angle Measuring Device	51
Plate 3-7 Engine Speed Sensor	51
Plate 3-8 Connection of Measuring Sensors to Computer System	53
Plate 3-9 Adaptor for AT-MIO-16X I/O Connector	56