

Occurrence Of Rare Metals At Gabal Abu Khruq Area, South Eastern Desert, Egypt.

By

Soliman Abu Elatta Abdallah

THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY OF SCIENCE

In (GEOLOGY)

To Geology Department
Faculty of Science Ain Shams University
2007

Ackmowledgements

Thanks for God who helped me until finished this thesis. I particularly thanks and gratitude Prof. Dr. A. M. Osman, Geology Department, Faculty of Sciences, Ain Shams University for the supervision and critical comments during the progress of this work.

The author would like to express his grateful thanks to Prof. M.E. Ibrahim, Nuclear Material Authority (NMA) for proposing the present point of research, his kind and continuous supervision during all stages of the present study.

Most greetings for associate E. M. Mohamed Moussa; (NMA), associate Prof. Dr. I. H. Ibrahim (NMA).

Thanks are also due to the staff members and my colleagues of the Gelogy Department Faculty of Science, Ain Shams University. I thank the members NMA for transportation and carrying out the chemical analyses for this thesis.

Full thanks are also extended to all these helped me through discussions or during the fieldwork.

Soliman Abu Elatta

جامعة عين شمس كلية العلوم

صفحة العنوان

اسم الطالب : سليمان أبو العطا عبد الله محمود

الدرجة العلمية : دكتوراه

القسم التابع له : قسم الجيولوجيا

اسم الكلية : كلية العلوم

الجامعة : جامعة عين شمس

سنة التخرج : ١٩٩٥

ماجستیر : ۲۰۰۳

سنة المنح : ۲۰۰۷

جامعة عين شمس كلية العلوم

رسالة دكتوراه

اسم الطالب : سليمان أبو العطا عبد الله محمود

عنوان الرسالة : تواجد الفلزات النادرة بمنطقة جبل أبو خروق، جنوب الصحراء

الشرقية، مصر.

اسم الدرجة : دكتوراه

لجنة الإشراف

أ.د./ عبد المنعم محمد عثمان أستاذ الجيولوجيا الإقتصادية بكلية العلوم-جامعة عين شمس

د. / عويس موسى محمد موسى أستاذ مساعد الجيوكيمياء - هيئة المواد النووية

د./ ابراهيم حسن ابراهيم أستاذ مساعد الجيولوجيا – هيئة المواد النووية

لجنة الممتحنين

أ.د./ ابراهيم عبد الناجي سالم أستاذ الجيولوجيا الإقتصادية – جامعة طنطا

أ.د./ عبد الكربم أحمد سالم أستاذ الصخور النارية والمتحولة – المركز القومي للبحوث

أ.د./ عبد المنعم محمد عثمان مشرفاً

الدراسات العليا

ختم الإجازة : أجيزت الرسالة بتاريخ / / ٢٠٠٧

موافقة مجلس الكلية / ٢٠٠٧ موافقة مجلس الجامعة / ٢٠٠٧

جامعة عين شمس كلية العلوم

شك___ر

أشكر السادة الأستاذة الذين قاموا بالإشراف وهم:

أ.د/ عبد المنعم محمد عثمان أستاذ الجيولوجيا الاقتصادية بعلوم عين

شمس

د/ عويس موسى محمد موسى أستاذ مساعد الجوكمياء بهيئة المواد النووية

د/ إبراهيم حسن إبراهيم أستاذ مساعد الجيولوجيا بهيئة المواد النووية

ثم الأشخاص الذين تعاون في البحث مع وهم:

أ.د/ محمد الأحمدى إبراهيم أستاذ الجيولوجيا نائب رئيس قطاع

البحوث بهيئة المواد النووبة

أ.د/ عادل حسن الأفندى أستاذ الجوكمياء ونائب رئيس قطاع البحوث

بهيئة المواد النووية

أ.د/ حمدى عبد الله محمود رئيس قسم الرواسب المشعة المتخالفة بهية

المواد النووية

السيد/ وليد سعد أحمد جيولوجي بهيئة المواد النووية

تواجد الفلزات النادرة بمنطقة جبل أبو خروق، جنوب الصحراء الشرقية، مصر

رسالة مقدمة من سليمان أبو العطا عبد الله محمود هيئة المواد النووية بكالوريوس وماجستير في الجيولوجيا

للحصول على درجة دكتوراه الفلسفة فى العلوم (جيولوجيا) قسم الجيولوجيا كلية العلوم – جامعة عين شمس

APPROVAL SHEET

Thesis Title Occurrence Of Rare Metals At Gabal Abu Khruq Area, South Eastern Desert, Egypt.

Author's Name

Soliman Abu Elatta Abdallah

Supervised by

Prof. Dr. Abdel Monem Mohamed Osman Prof. of Geology, Faculty of Science, Ain Shams University.

Dr. Ewais Moussa MohamedAssist. Of Geochemistry, Nuclear Material Authority.

Dr. Ibrahim Hassan Ibrahim

Assist. Of Geology, Nuclear Materials Authority.

Mohamed A. El boukhary

Head of Geology Department Faculty of Science, Ain Shams University

داعما

إلى الذين أخصب الله عنهم الرجس وطمرهم تطميرا

أهدى هذا العمل

سليمان أبوالعطا عبد الله

Abbreviations

W. = Wadi

ARC = Abu Khruq ring complex

G. = Gabal

F.N.S. = Ferruginated nepheline syenites

ESEM = Environmental scanning electron

microscope

 $Z^{\wedge}c$ = extinction angle

Abstract

The present thesis deals with the geological, structural, petrographical, geochemical, minerlizations and radiometrical studies of the rock units especially ring complex of Abu Khruq area.

The study area is located in the southeastern Desert of Egypt between Long. 34°10′ and 34°23′E, Lat. 24°30′ and 34°45′N and wholly covered by the basement rock units.

The basement rock units in Abu Khruq area can be arranged toctonostratigraphy beginning with the oldest as follws: Ophiolite assemblage. (serpentinites and related rocks and mélange), arc assemblage {meta-andsites and their pyroclastics metasedimentary rocks, gneisses (hornblende gneisses and hornblende biotite gneisses) and gneissose granodiorite}, late to post Pan-African granitoids (alkali feldspar granites, perthitic syenogranites and muscovite syenogranites) and Phanerozoic alkaline phase {alkaline volcanics (trachytes and rhyolites and their pyroclastics), alkaline gabbros, syenitic rocks as well as associated dykes}.

The geochemical studies indicated that, Abu Khruq rock units originated from alkaline magma and emplaced a within-plate environment. The fresh rocks have the same values of trace elements of the similar rocks but the ferrigunated nepheline syenits have abnormal concentration of Zr (up to 7154 ppm), Nb (up to 1959 ppm), Zn (up to 300 ppm) eU (up to 620 ppm) and eTh (up to 1800 ppm).

The structural studies of G. Abu Khruq area, indicated the following points:

- 1- The first phase of shorting (D₁) is emphasized by symmetrical and asymmetrical anticlines with fold axis running in the NW-SE direction and maybe associated with syn-tectonic subduction of the in earlier times.
- **Y-** The second phase of shorting (D₂) is emphasized by folding (F₂) with fold axis running in NNW-SSE direction and plunge toward NNW. The folding in this stage may be related to accretionary-transpressional stage of the Pan-African orogeny and associated with several strike-slip faults in several trends in this stage. This phase was followed by master joints running in NE-SW direction. These joints may be related to late Precambrian extension where granitic intrusions were probably formed by crustal remelting of the newly formed and thickened crust, possibly in extensional environments.

r- The third phase of deformation (D₃) is proved by crenulation foliations (F₃) with fold axes running in WNW-ESE direction and plunge in ESE direction. These folds may be formed because of motion of African plate against Laurasian plate (late Jurassic-early Cretaceous), which effected in the southern of Egypt. Large number of dyke swarms proves the second phase of extension, which running in the ENE-WSW direction. This phase of extension is followed by another one which is proved by joints running in NNW- SSE (the third phase of extension) and may related to the opening of Red Sea. After this phase of extensions G. Abu Khruq area affected by a structural episode of strike-slip faults in several trends, which are the traced of old faults that rejuvenated during the opening of the Red Sea.

The mineralogical studies indicated that, Abu Khruq ring complex especially ferruginated zone which contains variety of minerals such as malachite, rosasite, franklinite, kasolite, thorite, ferrithorite, uraothorite, columbite, tantalite, pyrochlore, samarskite, ilmenorutile, mossite, primary and secondary origin zircon, granet, rutile, ilmenite, pyrite, pyrrhotite, monazite, orthite and fluorite (violet and colorless). LREEs occur within monazite, orthite, thorite, ferrithorite, uranothorite, columbite, tantalite, pyrochlore, samarskite, mossite and aegirine.

The radioactive studies proved the following:

- 1) The abnormal concentrations of radioactive elements are restricted to NE of ARC of nepheline syenites that are deformed, ferruginated and feldspathized.
- ⁷) Pegmatoidal pockets in unaltered or altered nepheline syenites are usually higher concentration of radioactive elements than other varieties of nepheline syenites.
- Radioactivity and mineralization not related to ferruginated nepheline syenites, where the rhyolites, pyroclastics, spherulitic felsites and granophyre dykes show abnormal concentration of eU and eTh.
- (a) Most of ferruginated parts of Abu Khruq ring are not-radioactive and contain background values of the eU and eTh.
- Ouranium and thorium contents in unaltered plutonic and volcanic rocks of the ring complex are magmatic origin as well as basaltic andesite and syenite dykes, whereas the granophyre, alkaline diabase and tinguaite dykes as well as spherulitic felsites pyroclastic are magmatic and post magmatic origin.

CONTENTS

CHAPTER ONE	Page
INTRODUCTION	
A. Location and Accessibility	1
B. Physiography and Climate	2
C. Aim and Scope of the Present Work	4
D. Methodology	4
D.1. Field Work	4
D.2. Laboratory Work	5
E. Previous Work	5
E.1.Synopsis of the Precambrian Basement Rocks of	5
Egypt	9
E.2. Alkaline Rocks and Ring Complexes of Egypt	
CHAPTER TWO	
GEOLOGIC SETTING	
A. Ophiolitic assemblages	18
1. Ultramafic rocks	18
2. Ophiolitic Mélange	18
B. Arc assemblages	20
1. Metasedimentary rocks	20
2. Metavolcanics (Meta-andesites)	22
3. Gneisses	22
3.i. Hornblende gneisses	22
3.ii. Hornblende biotite gneisses	22
4. Gneissose granodiorites	25
C. Late- to post-tectonic granites	25
1. Alkali feldspar granites	25
2. Syenogranites	25
2.i. Perthitic syenogranites	25
2.ii. Muscovite syenogranites	26

D. Phanerozoic intra-plate magmatic of alkaline affinity (Abu	26
Khruq ring complex and associated rocks)	
1. Alkaline volcanic rocks and their pyroclastics	26
2. Trachyte plugs	26
3. Trachyte dykes	29
4. Alkaline gabbros	29
5. Basaltic andesite dykes	30
6. Alkaline syenites	30
7. Syenite dykes	33
8. Acidic dykes	33
9. Nepheline syenites	33
10. Tinguaite dykes	35
11. Bostonite dykes	35
12. Alkaline diabase dykes	37
CHAPTER THREE	
PETROGRAPHIC DESCRIPTION	
A. Ophiolitic assemblage	38
A.1. Serpentinites and related rocks	38
A.2. Ophiolitic mélange	39
A.2.i. Blocks and rock fragments	39
A.2.i.a Metapyroxenites	39
A.2.i.b. Metagabbros	39
A.2.i.c. Porphyritic metadiabases and metabasalts	41
A.2.ii. Matrix (Pebbly metamudstones)	41
B. Arc assemblages	42
B.1. Metasedimentary rocks	42
B.1.i. Biotite schists	42
B.1.ii. Actinolitic hornblende schists	42
B.1.iii. Metamudstones	44
B.1.IV. Metagreywackes	44
B.2.i. Metavolcanics (Meta-andesites and their meta-	44

pyroclastics)	
B.2.ii. Meta-pyroclastics	45
B.3. Gneisses	45
B.3.i. Hornblende gneisses	45
B.3.ii. Hornblende biotite-gneisses	47
B.4. Gneissose granodiorites	49
C. Late-to post-tectonic granites	50
C.1. Alkali feldspar granites	50
C.2. Syenogranits	51
C.2.i. Perthitic syenogranites	51
C.2.ii. Muscovite syenogranites	52
D. Phanerozoic intra-plate magmatic of alkaline affinity	
(Abu Khruq complex and associated rocks)	54
D.1. Alkaline volcanic rocks and their pyroclastics	54
D.1.a.i. Rhyolite porphyries	54
D.1.a.ii. Trachyte porphyries	54
D.1.a.iii Phonolite trachyte porphyries	56
D.1.b.i. Pyroclastic rocks	56
D.2 Trachyte plugs & D.3 Trachyte dykes	57
D.4 Alkaline Gabbros	57
D.5. Basaltic-andesite dykes	58
D.6. Alkaline syenites	61
D.7. Syenite porphyritic dykes	65
D.8. Acidic dykes	68
D.9. Nepheline syenites	68
D.10 Tinguaite dykes	75
D.11 Bostonite dykes	77
D.12 Alkaline diabase dykes	78
CHAPTER FOUR	
STRUCTURE GEOLOGY	
A. General statements	80