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his thesis is dedicated for investigating some of the 

spin-based electrical transport properties of two major 

types of nanostructures dominating nowadays 

mesoscopic devices physics research. The first device 

proposed consists of two-diluted magnetic semiconductor 

(DMS) leads and a nonmagnetic semiconducting quantum dot. 

The spin transport characteristics through such a device are 

investigated under the effect of an AC-field of a wide range of 

frequencies. The conductance for both spin parallel and 

antiparallel alignment in the two DMS leads with the 

corresponding equations for giant magnetoresistance (GMR) 

and spin polarization (SP) are deduced. Calculations show an 

oscillatory behavior of the studied parameters for both the 

cases of parallel and antiparallel spin alignment while the 

coherence property is shown in the results of SP and GMR. 

These oscillations are due to the coupling of photon energy 

and spin-up & spin-down subbands and also due to Fano-

resonance. This research might be useful for developing single 

spin-based quantum bits (qubits) required for quantum 

information processing, quantum spin-telecommunication and 

other wide ranged spintronics device applications in general. 
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For the second proposed device, Spin dependent transport 

characteristics through normal graphene/ ferromagnetic 

graphene/ normal graphene junction is investigated. The 

conduction of this junction is derived by solving Dirac 

equation for both parallel and antiparallel spin alignments of 

electrons. Numerical calculations are performed for the 

conductance for both spin alignments. Oscillatory behavior of 

the conductance for the two cases is due to the interplay 

between the photons of the induced AC-signal with both spin-

up and spin-down subbands. These oscillations are due to the 

modulation of the Fermi energy by the potential of the 

magnetic insulator and photon-energy. Also, the calculations 

of spin polarization and giant magnetoresistance show that 

these parameters could be modified by the barrier height and 

the angle of incidence of electrons on the corresponding region 

of the present device. Quantum pumping by induction of 

external photons could enhance spin transport mechanism 

through such investigated device. The present results show that 

the cutoff frequency for both parallel and antiparallel spin 

alignments varies strongly in the range of THz to 10
19

 Hz.  

Also, Thermospin effects in the present device are investigated 

through studying the thermospin characteristics such as spin 

Seebeck coefficient, the thermal conductance, and spin figure 

of merit. These characteristics are expressed in terms of the 

tunneling probability of Dirac fermions for both parallel and 

antiparallel spin alignments of electrons. The obtained results 

show that the values of Seebeck coefficient, thermal 

conductance, and figure of merit are different for spin up and 

spin down. Their values are increased as the frequency of the 

induced AC-field increases, that is, the thermospin transport 

through such device is enhanced by the photon energy. 
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The present investigation could be used widely for designing 

very high speed nanoelectronic devices and applications in the 

field of nanobiotechnology, for example, imaging processing 

and sheds lights on spin caloritronics in the nanoscale systems 

providing deep insight on this field.  
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