

FACULTY OF ENGINEERING

WATER QUALITY IMPROVEMENT WITHIN WAVE PROTECTED COASTAL ZONES

BY

AHMED MAHDY AHMED GAD HASHISH

B.Sc. Civil Engineering, Ain Shams University, 2002 M.Sc. Civil Engineering, Ain Shams University, 2007

A THESIS SUBMITTED FOR THE PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN CIVIL ENGINEERING DEPARTMENT OF IRRIGATION AND HYDRAULICS

Supervised by

Prof. Dr. Mohamed M. Nour El-Din Chairman of Irrigation and Hydraulics Department Faculty of Engineering Ain Shams University, Cairo, Egypt.

> Dr. Mohamed Seddik Gad El-Rab Associated Professor Irrigation and Hydraulics Department Faculty of Engineering Ain Shams University, Cairo, Egypt.

Dr. Mohamed Abd El-Hamid Gad Assistant Professor Irrigation and Hydraulics Department Faculty of Engineering Ain Shams University, Cairo, Egypt. Dr. Mohamed Khairy Elkamash Assistant Professor Irrigation and Hydraulics Department Faculty of Engineering Ain Shams University, Cairo, Egypt.

STATEMENT

This dissertation is submitted to Ain Shams University, Faculty of Engineering for the degree of PHD in Civil Engineering.

The work included in this thesis was carried out by the author and no part of the thesis has been submitted for a degree or qualification at any other University or Institution.

The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others

.

Date / / 2013

Signature

Ahmed Mahdy Ahmed Gad Hashish

ACKNOWLEDGMENT

First of all, Thanks are due to Allah to whom any success in life is attributed.

I would like to express my deepest gratitude and appreciation to **Prof. Dr. Mohamed M. Nour El-Din**, Chairman of Irrigation and Hydraulics Department, Faculty of Engineering, Ain Shams University, for his help, guidance, useful suggestions, and encouragement throughout this work.

My special thanks are to **Dr. Mohamed Seddik Gad El-Rab**, Associated Professor, Faculty of Engineering, Ain Shams University, for his kind supervision, comments and stimulating discussion, which are gratefully acknowledged and sincerely appreciated.

A special word of thanks is to **Dr. Mohamed A. Gad** Assistant Professor, Faculty of Engineering, Ain Shams University, for his kind and friendly assistance, valuable advice, faithful supervision, precious help, and constant guidance.

Acknowledgment is given to **Prof. Dr. Mohamed Khairy Elkamash**, Assistant Professor, Faculty of Engineering, Ain Shams University, for his guidance.

Last but not least, I would like to thank my family for their self-denial and for sparing no effort in encouraging and supporting me continuously throughout my study.

i

ABSTRACT

Ahmed Mahdy Hashish, "WATER QUALITY IMPROVEMENT WITHIN WAVE PROTECTED COASTAL ZONES".

Coastal changes; erosion and accretion are natural and ongoing processes. The natural balance between erosion and accretion can greatly be affected by manmade coastal structures. This may adversely impact the surrounding coastal environment causing deteriorated water quality and unbalanced ecosystems.

Shoreline changes due to manmade structures are usually designed without taking the effect on water quality into account. This study proposes a methodology for studying water quality in coastal zones that significantly can alter the design.

Miami, Mandrah, and Montazah Beaches in Alexandria, Egypt provide an example of this problem and are used in this research as a case study.

In this research, a multi-component numerical modeling technique was developed for simulating the 2D depth averaged hydrodynamics and water quality in coastal areas. *Geographic information system* (GIS) is being used as the main pre-processing tool for the analysis of the study area.

The multi-component technique comprises four mathematical models (NMLONG, RMA2, STWAVE, and RMA4) to study waves, currents and water quality on the study area. Five scenarios are studied by this technique to get the environmental impact in terms of water quality. Different breakwater configurations are studied using the developed methodology to assess the hydrodynamics and water quality parameters. Biological oxygen demand (BOD) is the water quality parameter investigated in the study area. A statistical methodology was implemented to compare between the impacts of different breakwater configurations on the water quality within the study area. The optimum solution is the one having the least difference with the natural case.

The results showed that the optimum solution that significantly reduces the water quality deterioration is the submerged breakwaters. A wave analysis has been conducted to the submerged breakwater for computing the wave run-up to ensure the protection of the shore line.

An evaluation for the submerged breakwater scenario was performed in order to identify the optimum free board over the submerged breakwater.

Key words: Coastal zones - water quality – hydrodynamic – finite element.

iii

TABLE OF CONTENT

ACKNOWLEDGMENTS	i
ABSTRACT	ii
TABLE OF CONTENT	iv
CHAPTER 1: INTRODUCTION	2
1.1 General	2
1.2 Environmental Impacts of Coastal Structures	2
1.3 Study Area and Problem Formulation	4
1.4 Scope of Work	6
1.5 Research Main Objectives	6
1.6 Structure of the Thesis	7
CHAPTER 2: LITERATURE REVIEW	11
2.1 Introduction	11
2.2 Coastal Hydrodynamics Processes	12
2.2.1 Wind	12
2.2.2 Waves	13
2.2.3 Tides	15
2.2.4 Currents	16
2.2.5 Sediment transport	17
2.3 Coastal Structures	17
2.3.1 Sea dikes	19
2.3.2 Seawall	19
2.3.3 Revetment	19
2.3.4 Bulkhead	20
2.3.5 Groin	21

2.3.6 Breakwater	21
2.3.7 Nourishment	25
2.4 Hydrodynamics and Shoreline Changes Modeling	27
2.4.1 Three dimensional models	28
2.4.2 Two dimensional models	29
2.4.3 One-line models (1D models)	30
2.4.4 Selected hydrodynamic and water quality numerical models	30
2.4.5 NMLONG model	31
2.4.6 RMA2 model	33
2.4.7 STWAVE model	38
2.4.8 RMA4 model	44
2.5 Previous Studies Hydro-dynamics and Water Quality Improvement within Wave Protected Coastal Areas	y 49
 2.5 Previous Studies Hydro-dynamics and Water Quality Improvement within Wave Protected Coastal Areas 2.6 Case Study 	y 49 53
 2.5 Previous Studies Hydro-dynamics and Water Quality Improvement within Wave Protected Coastal Areas 2.6 Case Study 2.6.1 Historical background and previous studies 	y 49 53 54
 2.5 Previous Studies Hydro-dynamics and Water Quality Improvement within Wave Protected Coastal Areas 2.6 Case Study 2.6.1 Historical background and previous studies 2.7 Summary 	y 49 53 54 59
 2.5 Previous Studies Hydro-dynamics and Water Quality Improvement within Wave Protected Coastal Areas 2.6 Case Study 2.6.1 Historical background and previous studies 2.7 Summary CHAPTER 3: DATA PRE-PROCESSING 	y 53 54 59 67
 2.5 Previous Studies Hydro-dynamics and Water Quality Improvement within Wave Protected Coastal Areas 2.6 Case Study 2.6.1 Historical background and previous studies 2.7 Summary CHAPTER 3: DATA PRE-PROCESSING. 3.1 Introduction 	y 53 54 59 67 67
 2.5 Previous Studies Hydro-dynamics and Water Quality Improvement within Wave Protected Coastal Areas 2.6 Case Study 2.6.1 Historical background and previous studies 2.7 Summary CHAPTER 3: DATA PRE-PROCESSING. 3.1 Introduction 3.2 Study Area and Site Description 	y 53 54 67 67 67
 2.5 Previous Studies Hydro-dynamics and Water Quality Improvement within Wave Protected Coastal Areas 2.6 Case Study 2.6.1 Historical background and previous studies 2.7 Summary CHAPTER 3: DATA PRE-PROCESSING. 3.1 Introduction	y 53 54 67 67 67 69 69
 2.5 Previous Studies Hydro-dynamics and Water Quality Improvement within Wave Protected Coastal Areas 2.6 Case Study 2.6.1 Historical background and previous studies 2.7 Summary CHAPTER 3: DATA PRE-PROCESSING. 3.1 Introduction 3.2 Study Area and Site Description 3.2.1 Location 3.2.2 Background of the shore protection projects 	y 53 54 67 67 67 69 69 69
 2.5 Previous Studies Hydro-dynamics and Water Quality Improvement within Wave Protected Coastal Areas 2.6 Case Study. 2.6.1 Historical background and previous studies 2.7 Summary CHAPTER 3: DATA PRE-PROCESSING. 3.1 Introduction 3.2 Study Area and Site Description 3.2.1 Location 3.2.2 Background of the shore protection projects 3.3 Meteorological Data. 	y 49 53 54 67 67 67 67 69 69 69 69
 2.5 Previous Studies Hydro-dynamics and Water Quality Improvement within Wave Protected Coastal Areas 2.6 Case Study 2.6.1 Historical background and previous studies 2.7 Summary CHAPTER 3: DATA PRE-PROCESSING. 3.1 Introduction	y 49 53 54 67 67 67 69 69 69 69 70 71

3.3.3 Rainfall	72
3.3.4 Wind	72
3.3.5 Storm	74
3.4 Oceanographic Data	75
3.4.1 Water levels and sea-level rise	75
3.4.2 Waves	76
3.4.3 Currents	78
3.4.4 Sediments	78
3.5 Digitizing the Available Data Using GIS	79
3.5.1 The selected common coordinate system	80
3.5.2 Coordinate systems transformation	81
3.5.3 The merged data set	82
CHAPTER 4: DEVELOPMENT OF THE 2D MULTI-	
COMPONENT TECHNIQUE	90
4.1 Introduction	90
4.2 The Multi Component Technique	90
4.2.1 The multi component technique modules	91
4.3 Models Description	94
4.3.1 NMLONG model	94
4.3.2 RMA2 model	96
4.3.3 STWAVE model	100
4.3.4 RMA4 model	102
4.4 Simulation of the 2D Hydrodynamics and Water Quality	
Models in the Study Area	104
1 1 Study area	104

4.4.2 Longshore current profile	105
4.4.3 Finite element mesh generation and bathymetry data	105
4.4.4 Hydrodynamic boundary conditions	106
4.4.5 Finite difference Cartesian grid generation	107
4.4.6 Spectral wave field generation	107
4.4.7 Wave run-up prediction	107
4.4.8 Evaluating the pollution load	109
4.4.9 Used parameters	112
4.4.10 Output of the runs related to the emerged breakwater	
scenario	114
4.5 Multi-component technique validation and verification	115
4.5.1 Natural	116
4.5.2 Emerged breakwater	118
4.5.3 Emerged breakwater with submerged gaps	119
4.5.4 Submerged breakwater	119
CHAPTER 5: APPLICATION ON MIAMI, MANDRAH AN	١D
MONTAZAH CASE STUDY	142
5.1 Simulation Procedure and Setup	142
5.1.1 Dimensions of the study area	143
5.1.2 Finite element mesh generation and bathymetry data	144
5.1.3 Design wave conditions	144
5.1.4 Hydrodynamic boundary conditions	144
5.1.5 Model Setup and Simulation	146
5.2 Assessment Methodology	148
5.2.1 The Comparison Domain	148

5.2.2 Statistical assessment of the solutions148
5.2.3 Models output150
5.3 Sequence of Solutions Studied152
5.4 Results and Analysis
5.4.1 Results of the studied scenarios
5.5 Scenario Assessment153
5.6 Wave Analysis of the Submerged Scenario156
5.7 Selecting of the Optimum Free Board Related to the Submerged Breakwater
5.8 Summary
CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS
6.1 General
6.2 Conclusions
6.2.1 General conclusions
6.2.2 Conclusions related to Miami, Mandrah, and Montazah
area197
6.3 Recommendations and Future Studies199
REFERENCES
ARABIC SUMMARY

LIST OF FIGURES

Figure 1-1:	Types of shoreline changes associated with single and
	multiple breakwaters (from US Army Corps of
	Engineers)9
Figure 1-2:	Water quality impacts of coastal shore protection
	structures
Figure 2-1:	Beach profile terminology
Figure 2-2:	Waves in deep water
Figure 2-3:	Waves in shallow water
Figure 2-4:	Longshore current
Figure 2-5:	STWAVE co-ordinate grid orientation
Figure 2-6:	Illustration of the breakwater promoting vertical
	circulation flow
Figure 2-7:	Contamination of water at the leeside of emerged
	breakwater 64
Figure 2-8:	Submerged breakwater system for Miami, Mandrah and
	Montazah area
Figure 2-9:	Water quality before and after the construction of the
	submerged breakwater
Figure 3-1:	Alexandria Governorate
Figure 3-2:	Miamy, Mandrah, and Montaza beaches
Figure 3-3:	Map of Alexandria beaches
Figure 3-4:	Yearly prevailing wind rose
Figure 3-5:	Mandrah – Montazah wave rose (Data analyzed from
	Jan. 1949 to Aug. 1997)
Figure 3-6:	The shore line and the bathymetric data
Figure 3-7:	The bathymetric data shown in raster format relative to
	ESAD datum of "100.00"
Figure 3-8:	The geo-referenced Google image of the study area
	rectified in the ETM – Red belt coordinates
Figure 4-1:	Schematic flow chart for the simulation procedure 120

Figure 4-2:	Schematic shore profile and longshore current velocity
	obtained from NMLONG 121
Figure 4-3:	Definition sketch for wave and wind directions 121
Figure 4-4:	Configurations for the studied breakwater scenarios 122
Figure 4-5:	Dimension of the natural configurations of the study
	area showing feature objects123
Figure 4-6:	Shore profile and longshore current velocity obtained
	from NMLONG 124
Figure 4-7:	The finite element mesh of the natural breakwater
	scenario125
Figure 4-8:	GIS pre- processed bathymetry bed levels relative to
	the ESAD of (100.00)
Figure 4-9:	The finite element bathymetry interpolation with bed
	levels relative to the ESAD of (100.00) for the natural
	scenario 126
Figure 4-10): RMA2 boundary condition for the natural scenario 126
Figure 4-11	: STWAVE Cartesian grid 127
Figure 4-12	2: Location of the comparison domain 127
Figure 4-13	8: RMA4 boundary condition for the natural scenario 128
Figure 4-14	: Field velocity contours resulting from longshore
	current for the natural scenario
Figure 4-15	5: Breaking dissipations resulted from STWAVE related
	to natural scenario130
Figure 4-16	5: The wave filed at storm conditions for the submerged
	scenarios
Figure 4-17	BOD concentration for the natural simulation adopted
	by RMA4 model 132
Figure 4-18	3: The current intensities obtained from the natural
	scenario at the comparison domain133
Figure 4-19	P: The Velocity vectors for the natural scenario at the
	comparison demand 133

Figure 4-20: Emerged breakwater superimposed on the calculated
energy dissipations134
Figure 4-21: Contamination of water at the leeside of emerged
breakwater (El-sharnouby & Soliman, 2010) 135
Figure 4-22: BOD concentration for the emerged simulation
adopted by RMA4 model 136
Figure 4-23: Water quality deterioration as a result of constructing
the emerged breakwater with submerged gaps (Google
earth, 2007)
Figure 4-24: concentration for the emerged with submerged gaps
simulation adopted by RMA4 model138
Figure 4-25: The water quality after the construction of the
submerged breakwater (El-sharnouby & Soliman,
2010)
Figure 4-26: BOD concentration for the submerged simulation
adopted by RMA4 model 140
Figure 5-1: Case study dimension for the natural case 161
Figure 5-2: The finite element mesh of the natural scenario 162
Figure 5-3: The natural bathymetry (bed levels are relative to
ESAD of 100.00)
Figure 5-4: The finite elements mesh of the emerged and emerged
with submerged gaps scenarios
Figure 5-5: The bathymetry interpolated to FEMs of the emerged
and emerged with submerged gaps scenarios (bed
levels are relative to the ESAD of 100.00)163
Figure 5-6: The finite element mesh of the emerged with gaps
scenario164
Figure 5-7: The bathymetry interpolated to FEMs of the emerged
with gaps scenario (bed levels are relative to the ESAD
of 100.00)
Figure 5-8: The finite element mesh of the submerged scenario 165

Figure 5-9: The bathymetry interpolated to FEMs of the submerged
scenario (bed levels are relative to the ESAD of 100.00)
Figure 5-10: RMA2 boundary condition for the natural scenario 166
Figure 5-11: RMA2 boundary condition for the emerged scenario
Figure 5-12: RMA2 boundary condition for the emerged with
submerged gaps scenario 167
Figure 5-13: RMA2 boundary condition for the emerged with gaps
scenario
Figure 5-14: RMA2 boundary condition for the submerged scenario
Figure 5-15: RMA4 pollutant boundary condition for the natural
scenario
Figure 5-16: RMA4 pollutant boundary condition for the emerged
and emerged with submerged gaps scenarios
Figure 5-17: RMA4 pollutant boundary condition for the emerged
with gaps scenario 169
Figure 5-18: RMA4 pollutant boundary condition for the
submerged scenario 170
Figure 5-19: The analysis and comparison domains 170
Figure 5-20: Contours of the velocity field of the natural scenario
Figure 5-21: Velocity vectors for the natural scenario 172
Figure 5-22: Contours of the velocity field of the emerged scenario
Figure 5-23: Velocity vectors for the emerged scenario 174
Figure 5-24: Contours of the velocity field of the emerged with
submerged gaps scenario 175
Figure 5-25: Velocity vectors for the emerged with submerged gaps
scenario

Figure 5-26: Contours of the velocity field of the emerged with
submerged gaps scenario 177
Figure 5-27: Velocity vectors for the emerged with gaps scenario
Figure 5-28: Contours of the velocity field of the submerged
scenario 179
Figure 5-29: Velocity vectors for the submerged scenario 180
Figure 5-30: The wave filed at storm conditions for the submerged
scenarios181
Figure 5-31: BOD concentrations of the natural simulation 182
Figure 5-32: BOD concentrations of the emerged simulation 183
Figure 5-33: BOD concentrations of the emerged with submerged
gaps simulation184
Figure 5-34: BOD concentrations of the emerged with gaps
simulation185
Figure 5-35: BOD concentrations of the submerged simulation. 186
Figure 5-36: Deterioration ratios of the different scenarios with
respect to the natural scenario at simulation time 6 hr.
Figure 5-37: Deterioration ratios of the different scenarios with
respect to the natural scenario at simulation time 12 hr.
Figure 5-38: Deterioration ratios of the different scenarios with
respect to the natural scenario at simulation time 18 hr.
Figure 5-39: Deterioration ratios of the different scenarios with
respect to the natural scenario at simulation time 24 hr.
Figure 5-40: Deterioration ratios of the different scenarios with
respect to the natural scenario at simulation time 48 hr.