Ain Shams University Faculty of Science Chemistry Department

The assessment of some enzymes

in human body by new optical sensors

A Thesis

Submitted for the Degree of Master of Science As Partial Fulfillment for Requirements of Master of Science "Chemistry Department"

By

Hesham Gamal El-Din Afify Ibrahem

B.Sc. in Biochemistry and Chemistry, Faculty of Science Ain Shams University 1988

Under Supervision of

Dr. Lilly Henain Khalil

Associate Professor of Analytical Chemistry and Inorganic , Faculty of Science, Ain Shams University

Dr. Ahmed Osman Youssef

Associate Professor of Analytical Chemistry , Faculty of Science, Ain Shams University

2015

Ain Shams University Faculty of Science Chemistry Department

Approval Sheet

The assessment of some enzymes

in human body by new optical sensors

By

Hesham Gamal El-Din Afify Ibrahem

B.Sc. in Biochemistry and Chemistry, Faculty of Science Ain Shams University 1988

This thesis for Master degree has been approved by:

Dr. Lilly Henain Khalil

Associate Professor of Analytical Chemistry and Inorganic , Faculty of Science, Ain Shams University

Dr. Ahmed Osman Youssef

Associate Professor of Analytical Chemistry , Faculty of Science, Ain Shams University

Head of Chemistry Department Prof. Dr. Hamed Ahmed Drbala Ain Shams University Faculty of Science Chemistry Department

Student Name: Hesham Gamal El-Din Afify Ibrahem

Scientific Degree: M.Sc.

Faculty Name: Faculty of Science – Ain Shams University

Graduation Year: 1988

Granting Year:

Head of Chemistry Department Prof. Dr. Hamed Ahmed Drbala

Acknowledgment

First and last thanks to Allah who give me the power to go forward in a way illuminated with his merciful guidance.

I would like to express my thanks to **Dr. Lilly Henain Khalil** Associate Professor of Analytical Chemistry and Inorganic, Faculty of Science, Ain Shams University, for giving me the chance to be one of her students and for her generous advices, valuable discussions, and **Dr. Ahmed Osman** Associate Professor of Analytical chemistry, Faculty of Science, Ain Shams University for his efforts & co-operation.

Also I would like to thank **Dr. Mohamed Said**, Associate Professor of Analytical chemistry, Facultyof Science, Ain Shams University who helped me greatly, useful guidance effective contributions, and gave me the confidence to express my ideas freely.

Note

Beside the work done in this thesis the candidate has attended post-graduate courses for one year in advanced inorganic and analytical chemistry including the following topics.

- 1. Advanced instrumental chemical analysis.
- 2. Advanced chromatographic and separation.
- 3. Advanced electro- and electroanalytical chemistry.
- 4. Mechanisms of inorganic reaction.
- 5. Group theory and computer applications in chemistry.
- 6. Molecular spectroscopy.
- 7. Organometallic chemistry.
- 8. Radiation and radioanalytical chemistry.
- 9. English language.

He has successfully passed written examinations in these topics.

Head of Chemistry Department Prof. Dr. Hamed Ahmed Drbala

Contents

		Page
Contents		Ι
List of figures		V
List of tables		IX
List of abbreviat	ions	Х
Aim of work		XIII
	Chapter I Introduction	1
1.1	Photoluminescent Energy Level Diagrams	3
1.2	Fluorescence spectroscopy	6
1.3	Characteristics of fluorescence emission	8
1.3.1	The Stokes Shift	9
1.3.2	The advantage of fluorometric technique	10
1.3.3	Fluorescent spectrum	12
1.3.4	Resonance energy transfer	13
1.3.5	Quenching of Fluorescence	15
1.3.5.1	Quenchers of fluorescence	21
1.3.5.2	Theory of collisional quenching	22
1.3.5.3	The theory of dynamic fluorescence quenching	24
1.3.6	Fluorescence sensing	28
1.3.6.1	Mechanisms of Sensing	29
1.3.7	Fluorescent Probe	33
1.3.7.1	Fluorescent organic dyes	34
1.3.7.2	Fluorescent proteins	37
1.4	Literature review	39
1.4.1	Determination of Xanthine Oxidase in human plasma	39
1.4.2	A Sensitive reversed-phase high-performance liquid	40
	chromatography method for the quantitative	

1.4.3	determination of milk xanthine oxidase activity A high-performance liquid chromatographie HPLC	41
	method for the determination of hypoxanthine,	
	xanthine, uric Acidand allantoin in serum	
1.4.4	Kinetic and thermodynamic studies of glucose oxidase	42
	catalysed oxidation reaction of glucose	
1.4.5	Activity of glucose oxidase functionalized onto	43
	magnetic Nanoparticles	
1.4.6	Glucose oxidase as an analytical reagent	44
1.4.7	References	45
Chapter II	Highly sensitive and selective spectrofluorimetric	60
	determination of Activity of xanthine oxidase in serum	
	samples using optical sensor organomettalic palladium	
	complex	
	Abstract	60
	Introduction	61
2.1	Apparatus:	63
2.2	Methods	63
2.2.1	Materials	63
2.3	Materials synthesis Methods	65
2.3.1	Preparation of uric acid solutions	65
2.3.2	Synthesis of [Pd-BQC] complex	65
2.4	Validation	66
2.4.1	Linearity	66
2.4.2	Precision	67
2.4.3	Recovery	67
2.5	Determination of (XO) in serum solution	67

2.6	Sample Preparation	68
2.7	Recommended procedure	68
2.8	Standard method	69
2.8.1	Assay principle	69
2.9	Analytical application	70
2.10	Results and discussion	72
2.10.1	Spectral characteristics	72
3.10.1.1	Absorption and Emission spectra	72
2.10.2	Effect of Solvent	73
2.10.3	Effect of pH	74
2.10.4	Analytical Performance	75
2.10.4.1	Validation of the Method	75
	(i) Linearity and Range	75
	(ii) Accuracy and Precision	78
2.11	Analytical Applications	79
2.12	Xanthine oxidase activity	79
2.13	Conclusion	83
2.14	References	84
Chapter III	Highly sensitive spectrofluorimetric assessment o glucose in serum samples using 2-(2,2-dichloro-3 oxoindolin-1-yl)-3H-indol-3-one photo probe	
3.1	Introduction	89
3.2	Preparation of optical sensor [DOI]	90
3.3	Experimental	91
3.3.1	Apparatus	91

Ш

3.3.2	Reagents	91
3. 3. 3	Preparation of Reagents	92
3.4	Validation	94
3.4.1	Linearity	94
3.4.2	Precision	94
3.4.3	Recovery	94
3.5	Determination of (GO) in serum solution	95
3.6	Sample Preparation	95
3.7	Recommended procedure	96
3.8	Standard method	96
3.8.1	Assay principle	97
3.9	Analytical application	98
3.10	Results and discussion	99
3.10.1	Spectral characteristics	99
3.10.2	Effect of Solvent	100
3.10.3	Effect of pH	101
3.11	Analytical application	102
3.11.1	Linear range and limit of detection	102
3.11.2	Glucose oxidase enzyme activity	106
3.11.3	Accuracy and precision of the method	107
3.12	Analytical applications	109
3.13	Conclusion	110
3.14	References	111
Summary		114
الملخص عربي		ŝ

List of figures

		Page
Figure (1.1)	Absorption and fluorescence emission spectra of	2
	perylene and quinine. Emission spectra cannot	
	be correctly presented on both the wavelength	
	and wavenumber scales. The wavenumber	
	presentation is correct in this instance.	
Figure (1.2)	One form of a Jablonski diagram.	4
Figure (1.3)	The ring structures characteristic of fluorescent	10
	molecules.	
Figure (1.4)	Spectral overlap for fluorescence resonance	14
	energy transfer (RET).	
Figure (1.5)	Jablonski diagram with collisional quenching	16
	and fluorescence resonance energy transfer	
	(FRET). The term Σk_i is used to represent non-	
	radiative paths to the ground state aside from	
	quenching and FRET.	
Figure (1.6)	Modified Jablonski diagram illustrating:	26
	absorption hv _A ; non-radiative decay processes	
	$k_{nr};\ radiative\ decay,\ i.e.\ fluorescence\ hv_F$,	
	another non-radiative paths to the ground state	
	fluorescence collisional quenching and FRET.	

\mathbf{E} = $(1,7)$	Madified Table and discuss (11) (()	07
Figure (1.7)	Modified Jablonski diagram illustrating	27
	quenching by halide ions.	
Figure (1.8)	Modified Jabloftski diagram for the processes of	29
	absorption and fluorescence emission (left),	
	dynamic quenching (middle), and RET (right).	
Figure (1.9)	Jablolnski diagram for 1hc free (F) and bound	31
	(H) forms of a sensing probe.	
Figure (1.10)	A zinc probe based on photo induced electron	32
	transfer.	
Figure (1.11)	Common classes of fluorescent dyes are based	35
	on (A) fluorescein and (B) rhodamine.	
Figure (1.12)	Examples of improved organic fluorophores: (A)	36
	BODIPY and (B) Aiexa Fluor 488.	
Figure (2.1)	chemical structure of [Pd-BQC]	66
Figure (2.2)	Absorption spectra of optical sensor in different	72
	solvents	
Figure (2.3)	Fluorescence emission spectrat of 1x10 ⁻⁵ mol/L	73
	optical sensor in different solvents at λ_{ex} = 420	
	nm.	
Figure (2.4)	Absorption and emission spectra of the optical	74
	sensor in DMSO	
Figure (2.5)	Fluorescence emission spectra of 1x10 ⁻⁵ mol/L	75
	optical sensor in different pH at λ_{ex} = 420 nm.	
Figure (2.6)	Fluorescence emission spectra of 1x10 ⁻⁵ mol/L	77
	optical sensor in different concentrations of uric	
	acid at pH = 8.9 and λ_{ex} = 420 nm.	
L		

Figure (2.7)	Liner relationship between the fluorescence	78
115010 (2.7)	intensity of [Pd-BQC] and different	10
	concentration of uric acid.	
Figure (2.8)	Effect of the reaction time between enzyme and	80
	substrate on the fluorescence intensity of [pd-]	
	complex in DMSO. (incubation time =	
	5,15,25,35, 45, 55, 65, 75, 85, 95, 105, 115, 125,	
	135, 145 Seconds).	
Figure (3.1)	structure of 2-(2,2-dichloro-3-oxoindolin-1-yl)	89
	3H-indol-3-one	
Figure (3.2)	Absorption spectra of 1.0 x 10 ⁻⁵ mol/L photo	99
	probe in different solvents.	
Figure (3.3)	Absorption and emission spectra of the optical	100
	sensor in acetonitrile	
Figure (3.4)	Fluorescence emission spectra of 1x10 ⁻⁵ mol/L	101
	optical sensor in different solvents at λ_{ex} = 410	
	nm.	
Figure (3.5)	Fluorescence emission spectra of 1x10 ⁻⁵ mol/L	102
	optical sensor in different pH at λ_{ex} = 410 nm.	
Figure (3.6)	Fluorescence emission spectra of 1x10 ⁻⁵ mol/L	103
	optical sensor in different concentration of H ₂ O ₂	
	at pH = 7.7 and λ_{ex} = 410 nm.	
Figure (3.7)	Liner relationship between the fluorescence	104
	intensity of [DOI] and different concentration of	
	H_2O_2 .	
L		

Figure (3.8)	Effect of the reaction time between enzyme and	106
	substrate on the fluorescence intensity of [DOI]	
	complex in DMSO. (incubation time =	
	10,20,30,40, 50, 60, 70, 80, 90, 100, 110, 120,	
	130, 140, 150 Seconds).	

List of tables

		Page
Table (1.1)	Quencher of Fluorescence	22
Table (2.1)	Main characteristics of the patients	71
Table (2.2)	Sensitivity and regression parameters for	76
	optical sensor	
Table (2.3)	Evaluation of Intra-day and Inter-day	81
	Accuracy and Precision	
Table (2.4)	Average recovery of the proposed method	82
	in case samples of real patient donor	
Table (3.1)	Main characteristics of the patients	98
Table (3.2)	Sensitivity and regression parameters for	105
	[DOI]	
Table (3.3)	Evaluation of intra-day and inter-day	108
	accuracy and precision of [DOI].	
Table (3. 4)	Average recovery of the proposed method	110
	in case samples of real patient donor	

List of abbreviation

% RE	Percent relative error
% RSD	percent relative standard deviation
[Q]	The concentration of the quencher
А	The acceptor
a	Intercept
a	The average value for three readings
b	Slope
CFP	The cyan fluorescent protein
CL	Confidence limits
Cy3	Cyanine3
D	The donor
Da	Atomic mass or dalton
dba	Dibenzylideneacetone
DMF	Dimethyl Formamide
DMSO	Dimethyal sulfoxide
DNA	Deoxyribonucleic acid
DOI	2-(2,2-dichloro-3-oxoindolin-1-yl)-3H-
	indol-3-one
E	The efficiency of energy transfer
F	The fluorescence intensities in the
	absence quencher