

KASR ALAINY

EXPRESSION OF A TUMOR RELATED GENE CHP2 IN LEUKEMIA CELLS AND ITS CLINICAL SIGNIFICANCE

THESIS

SUBMITTED FOR MASTER DEGREE IN CLINICAL PATHOLOGY

BY

SARAH MAHMOUD HASSAN

M. B., B. CH. FACULTY OF MEDICINE BENI SUEF UNIVERSITY

SUPERVISED BY

PROF. DR. HALA FATHY SHIBA

PROFESSOR OF CLINICAL PATHOLOGY FACULTY OF MEDICINE CAIRO UNIVERSITY

PROF. DR. SEHAM OMAR MOHAMED

PROFESSOR OF CLINICAL PATHOLOGY FACULTY OF MEDICINE BENI SUEF UNIVERSITY

PROF. DR. MOHAMED ROSHDY EL MASRY

PROFESSOR OF INTERNAL MEDICINE AND CLINICAL HAEMATOLOGY FACULTY OF MEDICINE CAIRO UNIVERSITY

FACULTY OF MEDICINE CAIRO UNIVERSITY 2012

ABSTRACT

Background and Objectives:

CHP2 (calcineurin B homologous protein 2) is identified as a tumorassociated antigen highly expressed in different malignancies. It plays a critical role in cancer cell development, proliferation, motility and survival. It is suggested that the human tumor related gene CHP2 expression in leukemia primary cells and leukemia cell lines significantly increase, which may play an important role in growth process of leukemia cells.

Design and Methods:

In this study, the expression of CHP2 gene was analyzed in 10 normal healthy controls and 40 patients with de novo acute leukemia (20 AML and 20 ALL). CHP2 expression was analyzed using a Real-Time Quantitative Reverse-Transcriptase Polymerase Chain Reaction (RTQ-PCR) to investigate a possible relation, association or correlation with the clinical features of AL at diagnosis, such as age, gender, lineage, HB, TLC, platelet count, BM blast cell infiltration and risk group.

Results:

CHP2 was highly expressed in 13/40 AL studied patients (7/20 AML and 6/20 ALL) with mean expression level 2.7

Conclusions:

Many studies suggest that CHP2 expression is a novel prognostic marker in AL and thus needs to be incorporated into the patient stratification and treatment protocols. In addition, a quarter of AL patients fail therapy and novel treatments that are focused on undermining specifically the leukemic process are needed urgently.

Key words:

CHP2, AL, RTQ-PCR.

<u>Acknowledgement</u>

First and foremost, thanks to **ALLAH** the most kind, the most merciful and to whom any success is related.

No words can fulfill my deepest respect to **Prof. Dr.** HALA FATHY SHEBA, Professor of Clinical and Chemical Pathology Faculty of Medicine, Cairo University, for her motherly attitude, valuable guidance, scientific support and kind supervision.

I would like to express my deepest gratitude to **Prof. Dr. SEHAM OMAR MOHAMED,** Professor of Clinical and Chemical Pathology, Faculty of Medicine, Beni-Suef University, for the idea and plan of the study in addition to her reliable advice and kind supervision in every step in this work.

I would like also to express my deepest respect to **Prof. Dr. MOHAMED ROSHDY EL MASRY,** Professor of Internal Medicine, Faculty of Medicine, Cairo University, for his supervision, continuous encouragement and guidance.

To establish this project, I'm indebted to many people. I would like to thank **Dr. HISHAM HASAN ISSA**, Assistant Professor of Clinical and Chemical Pathology, , Faculty of Medicine, Beni-Suef University and **Dr. AMIRA HAMMAM**, Assistant Professor of Clinical and Chemical Pathology, Faculty of Medicine, Beni-Suef University for their support and guidance. Special thanks to my mother, father, sister and brother for their overlasting love, encouragement, support and care.

I especially wish to express my love to my husband without whom this work would never been completed.

Last but not least, special love to my sons to whom I give so little time and they give me so much love. To my family & my parents for without their everlasting love, encouragement & sacrifices, this work would never have been completed

Contents

	Page
List of figures	
List of abbreviations	
Introduction & Aim of the work	1
Review of literature	4
Materials and Methods	48
Results	70
Discussion	86
Summary	93
Reference	97
Arabic summa	109

ABSTRACT

Background and Objectives:

CHP2 (calcineurin B homologous protein 2) is identified as a tumorassociated antigen highly expressed in different malignancies. It plays a critical role in cancer cell development, proliferation, motility and survival. It is suggested that the human tumor related gene CHP2 expression in leukemia primary cells and leukemia cell lines significantly increase, which may play an important role in growth process of leukemia cells.

Design and Methods:

In this study, the expression of CHP2 gene was analyzed in 10 normal healthy controls and 40 patients with de novo acute leukemia (20 AML and 20 ALL). CHP2 expression was analyzed using a Real-Time Quantitative Reverse-Transcriptase Polymerase Chain Reaction (RTQ-PCR) to investigate a possible relation, association or correlation with the clinical features of AL at diagnosis, such as age, gender, lineage, HB, TLC, platelet count, BM blast cell infiltration and risk group.

Results:

CHP2 was highly expressed in 13/40 AL studied patients (7/20 AML and 6/20 ALL) with mean expression level 2.7

Conclusions:

Many studies suggest that CHP2 expression is a novel prognostic marker in AL and thus needs to be incorporated into the patient stratification and treatment protocols. In addition, a quarter of AL patients fail therapy and novel treatments that are focused on undermining specifically the leukemic process are needed urgently.

KyWords;

AL, CHP 2.

List of figures

		page
Fig. (1):	Childhood acute lymphoblastic leukaemia, FAB L1 type	11
Fig. (2):	Childhood acute lymphoblastic leukaemia, FAB L2 type	11
Fig. (3):	Acute lymphoblastic leukaemia' of Burkitt type, FAB L3 type	11
Fig. (4):	The FAB classification of AML	12
Fig. (5):	Structure of CHP	34
Fig. (6):	Stereo view of the CHP2/NHE1-peptide complex showing the overall structure	40
Fig. (7):	Coloured illustration of the RT & PCR assay	52
Fig. (8):	ROC curve	74
Fig. (9):	Percentage distribution of all patients as regards sex	75
Fig. (10):	Percentage distribution of all patients as regards hepatomegaly	75
Fig. (11):	Percentage distribution of all patients as regards splenomegaly	76
Fig. (12):	Percentage distribution of all patients as regards lymphadenopathy	76
Fig. (13):	Percentage distribution of all patients as regards type of acute leukemia	77
Fig. (14):	Comparison between patients and control as regards different clinical and laboratory parameters	77
Fig. (15):	Comparison between AL patients and controls as regards CHP2 expression rate	78

Fig. (16):	Comparison between different gender groups and total	78
	patients and controls as regards CHP2 expression rate	
Fig. (17):	Comparison between different patients groups (with	79
	and without hepatomegaly) and total patients and	
	controls as regards CHP2 expression rate	
Fig. (18):	Comparison between different patients groups (with	79
	and without splenomegaly) and total patients and	
	controls as regards CHP2 expression rate	
Fig. (19):	Comparison between different patients groups (with	80
	and without lymphadenopathy) and total patients and	
	controls as regards CHP2 expression rate	
Fig. (20):	Comparison between different AL groups(AML or ALL)	80
	and total patients and controls as regards CHP2	
	expression rate	
Fig. (21):	Comparison between different age groups and total	81
	patients and controls as regards CHP2 expression rate	
Fig. (22):	Comparison between different TLC groups and total	81
	patients and controls as regards CHP2 expression rate	
Fig. (23):	Comparison between different BM blast groups and	82
	total patients and controls as regards CHP2 expression	
	rate	
Fig. (24):	CHP2 CT Expression in AL Patients	83
Fig. (25):	GAPDH(internal control) CT Expression in AL Patients	84
	CHP2 CT Expression in AL Patients	

List of Tables

		page
Table (1)	Conditions predisposing to the development of	6
	Acute Leukemia.	
Table (2)	Morphologic FAB Classification of ALL in relation	9
	to cytochemical stains	
Table (3)	Morphologic FAB Classification of AML	10
Table (4)	WHO Classification of ALL	14
Table (5)	WHO Classification of AML	16
Table (6)	BCSH and the US–Canadian Consensus Group for	18
	the Diagnosis and Classification of Acute	
	Leukemia	
Table (7)	WHO Criteria for the diagnosis of biphenotypic	19
	leukaemia	
Table (8)	Cytogenetic/molecular genetic entities not	21
	included in the WHO classification of AML	
Table (9)	Cytologic Features of blasts in AL	23
Table (10)	The RT mix	61
Table (11)	Thermal profile of RT	62
Table (12)	PCR assay mix	65
Table (13)	Thermal profile of PCR	66
Table (14)	Statistical comparison between patients group	72
	and control group as regard their clinical data	
Table (15)	Statistical comparison between patients group	72
	and control group as regard their age and their	
	laboratory data	

Table (16)	Statistical comparison between patients group	73
	and control group as regard CHP2 gene level	
Table (17)	Patients characteristics and the CHP2 expression rates and levels in different clinical groups	73
Table (18)	Correlation between CHP2 expression rate and different clinical and laboratory parameters	74
Table (19)	Subjects data and Relative Quantification (RQ) results of CHP2 in de novo (AL) patients (number N=40) and in normal Age and Sex- matched healthy controls (number N=10)	85

List of Abbreviation

AA	Amino Acid
AL	Acute leukemia
ALL	Acute lymphoblastic leukemia
ALT	Alanine transaminase
AML	Acuta myeloid leukemia
AST	Aspartate transaminase
AP	Acid phosphatase
AUL	Acute undifferentiated leukemia
BCSH	British Committee for Standards in Haematology
BM	Bone marrow
B-ME	β-mercaptoethanol
Buffer RLT	Buffer RNeasy lysis
СаМ	Ca ⁺² -calmodulin
CBC	Complete Blood Count
CD	cluster of differentiation
cDNA	Complementary DNA
СНР	Calcineurin homologous protein
CHP2	Calcineurin B homologous protein 2
CML	Chronic myeloid leukemia
Cn A	Catalytic subunit calcineurin A
Cn B	Regulatory B subunit of phosphatase calcineurin
CNS	Central Nervous System
CSF	Cerebrospinal Fluid
СТ	Threshold cycle
L	

DIC	Disseminated intravascular coagulopathy
DNA	Deoxyribose Nucleic Acid
dNTP	Deoxynucleotide triphosphate
DRAK2	DAP-kinase-related apoptosis-inducing protein kinase
DDT	Dithiothreitol
EBV	Epstein Barr virus
EDTA	Ethylene Tetra-acetic acid
EF-hand	EF-hand structural motif
EGIL	European Group for the Immunological classification of Leukemia
FAB Classification	French–American–British Classification
FISH	Fluorescence in Situ Hybridization
GAPDH	Glyceraldehyde -3- phosphate dehydrogenase
GTPase	Guanosine triphosphatase
НВ	Hemoglobin
HEK293 Cells	Human Embryonic Kidney cell line 293
HCA520	Hepatocellular carcinoma antigen 520
HTLV-I	Human T-cell Leukemia Virus type –I
lg	immunoglobulin
IPT	Immunophenotyping
Kd	Constant of dissosiation
LDH	lactate dehydrogenase
MAbs	Monoclonal antibodies
MLL	Mixed Lineage Leukemia or Myeloid/Lymphoid
	Leukemia

MPAL	Mixed phenotype acute leukaemias
МРО	Myeloperoxidase
mRNA	Messenger RNA
NCI	National Cancer Institute
NES	Nuclear export signal
NFATC3	Nuclear factor of activated T cells
NHEs	Na+/H+ exchangers
NK	Natural killer
NSE	Non specific esterase
OVCAR3	Human epithelial ovarian cancer cell line
PAS	Periodic acid Schiff
РВ	Peripheral blood
PBMNCS	Peripheral blood mononuclear cell
PCR	Polymerase chain reaction
Q-RT-PCR	Quntitative Reverse transcriptase-PCR
RNA	Ribose Nucleic Acid
ROC	Receiver Operating Characteristic
RQ	Relative Quantification
RTmix	Reverse transcriptasion mix
RT-PCR	Reverse transcriptase-PCR
r-value	Correlation coefficient
SBB	Sudan black B
SD	Standerd deviation
Sm	surface membrane
TCR	T-cell receptor
TdT	Terminal deoxynucleotidyl transferase

TLC	Total leucocytic count
UNG	uracil-N-glycosylase
WHO	World Health Organization