Assessment of Diaphragmatic Mobility by Chest Ultrasonography in Patients Undergoing Pleurodesis

Thesis

Submitted for Partial Fulfillment of the Master Degree in Chest Diseases

> By Amr Mohamed Attiya Mostafa M.B., B.CH.

Under Supervision of Prof. Adel Mohamad Saeed

Professor of Chest Diseases Faculty of Medicine Ain Shams University

Dr. Ashraf Adel Gomaa

Assistant Professor of Chest Diseases Faculty of Medicine Ain Shams University

> Faculty of Medicine Ain Shams University **2018**

First of all thanks to **ALLAH** for helping me to achieve this work.

I would like to express my appreciation and gratitude to **Drof. Adel Mohamad Saeed;** Professor of Chest Diseases; Ain Shams University, for his continuous encouragement, excellent assistance, valuable guidance and generous support through this work. No words can express my deepest thanks for all he did to complete this work.

I'm really grateful to **Dr. Ashraf Adel Gomaa;** Assistant Professor of Chest Diseases; Ain Shams University, for his kind supervision, patience and moral support through this work.

I'm really thankful for all the members of the Abbassia Chest Hospital, for their cooperation and support.

Finally, I would like to thank all my family for their help and love.

Amr M. Attiya

سورة البقرة الآية: ٣٢

List of Contents

Title	Page No.
List of Tables	5
List of Figures	7
List of Abbreviations	
Introduction	1
Aim of the work	
Review of Literature	
Malignant Pleural Effusion	
 Pleurodesis in Malignant Pleural Effus 	ion31
Thoracic Ultrasound	
 Ultrasound and the Diaphragm 	57
Subjects and Methods	72
Results	
Discussion	
Summary	
Conclusion	
Recommendations	
References	
Arabic Summary	

List of Cables Table No. Title Page No. **Table** (1): Routine Pleural Fluid Tests for Pleural **Table (2):** Optional Pleural Fluid Tests for Pleural Characteristics of chemical pleurodesis **Table (3): Table (4):** Comparison between patient and control groups as regard age and DE......80 **Table (5):** Comparison between patient and control groups as regard sex......82 **Table (6): Table (7):** DE before and after pleurodesis......85 **Table (8):** Comparison between DE before and after 1 day pleurodesis......85 **Table (9):** Comparison between DE before and after 2 weeks pleurodesis......86 **Table (10):** Comparison between DE before and after 1 **Table (11):** Pair wise comparison between the DE before and after pleurodesis at different Table (12): Comparison between the male and female groups as regarding the DE before and after pleurodesis at different time of Table (13): Comparison between diabetic and non diabetic patients as regard DE before and after at different times......92 **Table (14):** Comparison between hypertensive and non hypertensive patients as regarding DE/cm before and after pleurodesis at different

List of Tables Cont ... Page No. Title Table No. Table (15): Comparison between IHD and non IHD patients as regard DE/cm before and after times pleurodesis at different of Table (16): Comparison between smoker, ex-smoker and non-smoker as regard DE/cm before pleurodesis......97 Table (17): Comparison between smoker, ex-smoker and non-smoker as regard DE/cm after

List of	Figures
---------	---------

Fig. No.	Title	Page No.
1 19.1 10.		1 age 1 to.

Figure (1):	A. Posteroanterior chest radiograph in a	
	patient with malignant pleural	
	mesothelioma demonstrating significant	
	right-sided pleural effusion and diffuse	
	pleural thickening associated with marked	
	volume loss of the right hemithorax. B.	
	Computed axial tomographic image from a	
	patient with pleural mesothelioma,	
	illustrating complete encasement of the	
	ipsilateral lung with a thick rind of tumor,	
	neoplastic invasion of the interlobar	
	fissures, small residual pleural effusion,	
	and marked unilateral volume loss	25
Figure (2):	Chest x ray showing massive right sided	
	pleural effusion with shift of the	
	mediastinum to the left side	
Figure (3):	Metastatic adenocarcinoma	28
Figure (4):	Axial CT scan shows mesothelioma of	
	the right chest with effusion and	
	thickened visceral pleura with underlying	
	pulmonary atelectasis (arrowheads)	28
Figure (5):	(a) A $3.5C$ (bandwidth 2–5MHz) convex	
	phased array probe. (b) An M12L linear	
	array probe (bandwidth 5–13MHz)	
Figure (6):	US examination of the chest	40
Figure (7):	a: Linear probe placed intercostally in an	
	oblique view. b: corresponding	
	sonographic view "sliding line of the	
T! (0)	visceral pleura	41
Figure (8):	a: Convex probe placed subcostally from	
	the right. b: Corresponding sonographic	
	image, Lung is indicated as a mirror	40
	artifact above the diaphragm	42

Fig. No.	Title Pa	ge No.
Figure (9):	Examination of the supra clavicu region	
Figure (10):	Horizontal line	
Figure (11):	Vertical lines	48
Figure (12):	Normal ultrasound images of the chest.	46
Figure (13):	Chest wall with normal smooth visce	ral
	pleura	47
Figure (14):	Seashore sign	
Figure (15):	(a) Malignant mesothelioma. CT se	
	shows lobulated pleural masses, with	
	area of chest wall invasion. (b) On the	US
	scan, the pleural masses with chest w	
	infiltration (arrows) are clearly depicted	
Figure (16):	(A) CT scan shows a soft tissue tur	
	with rib destruction (arrowheads).	
	Ultrasound reveals a well-defin	
	hypoechogenic mass within the chest wa	
Figure (17):	US demonstrates pleural thickening a	
	hypoechoic band	
Figure (18):	Ultrasound guided needle biopsy from tumor tissue	
Figure (19):	An intense pleural effusion (E) can	
rigure (13):	An intense pleurar enusion (E) can seen	56
Figure (20):	A) Probe position for B and M me	
Figure (20).	diaphragmatic excursion measureme	
	with 3.5–5 MHz probe. B) B-me	
	diaphragm sonography. The bright 1	
	reflects the diaphragm. C) M-me	
	diaphragm sonography	

List of Figures Cont		
Fig. No.	Title Page No).
Figure (21):	A) Probe position for B and M mode diaphragmatic thickness measurements in the zone of apposition with 10–12 MHz probe. B) B-mode sonography of the diaphragm in the zone of opposition	.62
Figure (22):	Right hemidiaphragmatic excursion during a quiet breath	.63
Figure (23):	Sonography of the diaphragm in the zone of opposition, in B-mode (right) and M- mode (left) during quiet breathing	.64
Figure (24):	Anterior subcostal approach	
Figure (25):	A subcostal approach.	
Figure (26):	(A) Measurement of diaphragmatic excursion (DE) during quiet breathing on the M-mode screen.	.76
Figure (27):	DE in control group and the patient group	.81
Figure (28):	Sex distribution among the patient and control groups.	.82
Figure (29):	DM in patient group	
Figure (30):	HTN in patient group.	
Figure (31):	IHD in patient group.	
Figure (32):	Comparison between DE at different time of measurements	
Figure (33):	Comparison between DE at different time of measurements	.89
Figure (34):	DE before and after pleurodesis in the different sex groups	.91
Figure (35):	DE before and after pleurodesis in diabetic and non diabetic patients	.93

	List of Figures Con	<i>t</i>
Fig. No.	Title	Page No.
Figure (36):	DE before and after pleure hypertensive and non hyp patients.	pertensive
Figure (37):	DE before and after pleurodesis smoking status.	s in the 3

List of Abbreviations

Abb.	Full term
ADA	Adenosine deaminase
BTS	British thoracic society
<i>CHF</i>	Congestive heart failure
<i>CSF</i>	Cerebrospinal fluid
<i>CT</i>	Computed Tomography
<i>DE</i>	Diaphragmatic Excursion
DUS	Diaphragmatic ultrasound
<i>F</i>	Frensh
<i>LDH</i>	Lactate dehydroxylase
<i>LS</i>	Lung sliding
<i>MHz</i>	Mega hertz
<i>MPE</i>	Malignant pleural effusion
NLS	No lung sliding
<i>PET</i>	Positron Emission Tomography
<i>PSP</i>	Primary spontaneous pneumothorax
SD	Standard deviation
<i>TB</i>	tuberculosis
<i>TUS</i>	Thoracic ultra sound
<i>UP</i>	Ultrasound Pattern
<i>US</i>	Ultrasound
<i>VATS</i>	Video assisted thoracoscopic surgery

INTRODUCTION

The aim of pleurodesis is to achieve a symphysis between visceral and parietal pleural layers, in order to prevent accumulation of either air or fluid in the pleuralspace. Its main indications are malignant pleural effusions and pneumothorax (*Rodriguez and Lopez, 1989*).

Pleurodesis can be done chemically or surgically chemicals such as Bleomycin, Tetracycline, Povidone iodine and talc (*Chen et al., 2013*).

Chemical pleurodesis involves the intrapleural instillation of a sclerosant through a chest catheter or by thoracotomy or thoracoscopy. Chemical pleurodesis by chest catheter uses an intercostal catheter to drain pleural fluid, reexpand the lung against the chest wall, and instill a sclerosant. Large-bore (20 to 32F) surgical chest tubes have become obsolete in preference for small-bore pigtail catheters (9 to 14F), which improve patient tolerance, provide options for outpatient pleurodesis, and have equivalent rates of success (*Caglayan et al., 2008*).

Surgical pleurodesis may be performed either via thoracotomy or thoracoscopy; leading to mechanical irritating in the parietal pleura (*Warren et al., 2008*).

Pleurodesis will certainly fail if the lung cannot fully expand to the chest wall (eg, trapped or entrapped lung, interstitial pulmonary fibrosis, endobronchial obstruction) because successful pleurodesis requires contact of the visceral and parietal pleura. Chemical pleurodesis should therefore not be attempted when full lung expansion to the chest wall does not occur after therapeutic thoracentesis. Patients whose lungs cannot fully expand usually have radiographic evidence of a pneumothorax after thoracentesis or experience chest discomfort during thoracentesis before all pleural fluid is drained (*Doelken, 2008*).

The most common adverse sequelae of chemical pleurodesis are fever, pain, and GI symptoms (*Shaw and Agarwal, 2004*).

A complete response is usually defined as no reaccumulation of pleural fluid after pleurodesis until death, and a partial response as partial re-accumulation of fluid radio graphically but not requiring further pleural intervention such as aspiration. However, some studies use a 30 day cut-off (*BTS*, 2009).

Diaphragm is the principal generator of tidal volume in normal subjects at rest. Studies have shown that the impairment of diaphragm mobility might be associated with alterations in the principal pulmonary function parameters (*Yamaguti et al., 2008*).

Chest ultrasonography has many Uses, both diagnostic and interventional. It can be used in diagnosis of diseases of the chest wall such as enlarged lymph nodes, rib abnormalities and also diaphragmatic abnormalities like diaphragmatic paralysis. Chest ultrasonography can also be used in interventional procedures of the pleural space such as thoracocentesis and pleural biopsy. In lung cancer, peripheral lung tumors that are in contact with or near the pleural surface can be safely biopsied under US guidance (*Havelock et al., 2010*).

Over the past few years, ultrasound has also been used to evaluate diaphragmatic mobility, since it offers some advantages over fluoroscopy: portability; no exposure to ionizing radiation; and direct quantification of diaphragmatic movement (*Houston et al., 1995*).

AIM OF THE WORK

To assess the diaphragmatic mobility using Chest Ultrasound in patients with malignant pleural effusion before and after pleurodesis.