EXPRESSION OF NITRIC OXIDE GENE IN ATHEROSCLEROTIC OCCLUSIVE ARTERIAL DISEASE

Thesis

Submitted for Complete Fulfillment of The M.D. Degree in

General Surgery

By

Khaled Ahmed Shawky (M.B., B.Ch., M.Sc., general surgery)

Supervised by

Prof. Ashraf Mohamed Hedayet

Professor of General & Vascular Surgery, Faculty of Medicine, Cairo University

Prof. Olfat Gamil Shaker

Professor of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University

Dr. Ayman Rifaat Abd-Elhassib

Lecturer of General & Vascular Surgery, Faculty of Medicine, Bani Suife University

CO-supervisor Dr. Hani Abd-Elfatah Zaied

Lecturer of General & Vascular Surgery, Faculty of Medicine, Bani suife University

> Faculty of Medicine, Cairo University 2010

и

(:)

ACKNOWLEDGEMENT

Thanks first and last to ALLAH for his great care, support, and guidance in every step in our life

It is my pleasure to express my deepest gratitude and sincere thanks to Prof. Dr. Ashraf Mohamed Hedayet Professor of General & Vascular Surgery, Faculty of Medicine, Cairo University, for his generous concern, sincere supervision, continuous advise and support.

The credit of bringing this work to light goes to Prof. Dr. Olfat Gamil Shaker Professor of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University. Her continued help and guidance made it possible to bring this work to its final shape. No words can express my feelings towards her.

My deepest gratitude, appreciation and thanks to Dr. Ayman Rifaat Abd-Elhassib Lecturer of General & Vascular Surgery, Faculty of Medicine, Bani suife University, for his sincere supervision, cooperation, continuous support throughout this work, valuable suggestion and saving no effort or time in reading each word in this work. To him I will always be grateful.

I wish to thank Dr. Dr. Hani Abd-Elfatah Zaied Lecturer of General & Vascular Surgery, Faculty of Medicine, Bani suife University. His constant encouragement and valuable advises were indispensable. I am definitely indebted to him more than I can express.

I wish to thank very much and express my deepest gratitude to Prof. Dr. Ayman Al-Samadoni, Professor of General and Vascular Surgery, Faculty of Medicine, Cairo University, for his sincere supervision, valuable suggestions and cooperation, continuous advise and support saving no effort or time in helping me in this work and in reading each word in this work. To him I will always be grateful. Finally, I should thank my senior staff, my colleagues at the General Surgery Department, Faculty of Medicine, Cairo University, who helped me a lot throughout this work.

Especial thanks to Prof. Dr. Mostafa Lotfy Abo El-Nasr, Professor and Head of General Surgery Department, Faculty of Medicine, Cairo University, for his generous concern, sincere supervision, continuous advise and support saving no effort to help me. To him I will always be grateful.

> Khaled A. Shawky, November, 2010

TO MY PARENTS

AND

MY FAMILY

CONTENTS

Page

• Introduction 1		
• Aim of the Work		
Review of Literature		
o Atherosclerosis	4	
• Pathology of Atherosclerosis	6	
o Molecular Pathogenesis of Atherosclerosis	27	
o Nitric Oxide and Atherosclerosis	52	
o NO Alterations in Atherosclerosis	67	
• Clinical Application of NO	87	
• Patients and Methods		
• Results		
• Discussion		
• Conclusion		
• Summary	130	
References	132	
• Arabic Summary 146		

LIST OF FIGURES

No.	Title	Page			
1	Schematic depiction of the major components of well developed intimal atheromatus plaque overlying an intact media	8			
2	Schematic summary of the natural history, morphologic features, main pathogenetic events, and clinical complications of atherosclerosis				
3	Injury model of atherosclerosis	31			
4	Tethering and rolling of circulating mononuclear leukocytes along the endothelial surface	33			
5	Interactions of the protein kinase C (PKC) and adenylate cyclase (cAMP) signaling systems	36			
6	Stimulation of nitric oxide synthase (NOS) by shear stress and cytokine activity, resulting in the production of nitric oxide (NO) (cGMP)	37			
7	LDL receptor pathway	39			
8	The role of NO in the microcirculation	65			
9	Mechanisms whereby eNOS may become "uncoupled" leading to the production of superoxide instead of NO	77			
10	eNOS regulation and NO-superoxide interactions in atherosclerosis	80			
11	Conventional and novel risk factors for atherosclerosis and endothelial dysfunction, and strategies for restoration	85			
12	Mean value of age (years) in the two studied groups	113			
13	Sex distribution in the two studied groups	114			
14	Number of risk factors in patient group	115			
15	IHD in patient group	116			
16	Presentation in patient group	117			
17	Occlusion site in patient group	117			
18	Multilesions in patient group	118			
19	Mean value of gene expression of eNOS (μ g/mg) in both tissue (arterial wall) and blood in the two studied groups	119			

LIST OF TABLES

No.	Title	Page					
1	American Heart Association classification of human atherosclerotic lesions from the fatty dot (type I) to the complicated type VI lesion	7					
2	Risk factors of atherosclerosis						
3	Measure of endothelial function						
4	The three isoforms of NOS						
5	Demographic data of the two studied groups						
6	Number of risk factors in patient group						
7	IHD in patient group						
8	Presentation in patient group	116					
9	Occlusion site in patient group	117					
10	Multilesions in patient group						
11	Mean value of gene expression of eNOS (μ g/mg) in both tissue (arterial wall) and blood in patient group classified according multilesions	118					
12	Mean value of gene expression of eNOS (μ g/mg) in both tissue (arterial wall) and blood in the two studied groups	119					
13	Correlation between gene expression of eNOS (μ g/mg) in both tissue (arterial wall) and blood and different studied parameters in patient group	120					

ABBREVIATIONS

ABI	: Ankle brachial index				
ACE	: Angiotensin converting enzyme				
Ach	Acetylcholine				
AdiNOS	: inducible nitric oxide synthase Complementary				
	deoxyribonucleic acid (DNA)				
ADMA	Asymmetric dimethylarginine				
ADP	Adenosine diphosphate				
AlbSNO	Complementary deoxyribonucleic acid (DNA) S-				
	nitrosoalbumin				
ApoA	Apolipoprotein A ₁				
ATP	: Adenosine triphosphate				
BH_4	: Tetrahydrobiopterin				
BK	: Bradykinin				
CAD	: Coronary artery disease				
CaM	: Calcium calmodulin				
cAMP	: Adenylate cyclase				
CETF	Cholesterol ester transfer protein				
cGMP	: Cyclic guanosine monophosphate				
CHD	: Coronary heart disease				
CRP	: C-reactive protein				
CVD	Cardiovascular disease				
EC	Endothelial cell				
ECAMs	Endothelial cell adhesion molecules				
ECM	Extracellular matrix				
EDCF	: Endothelium derived contracting factor				
EDHF	: Endothelium derived hyperpolarizing factor				
EDRF	: Endothelial derived relaxing factor				
ELAM-1	: Endothelial leukocyte adhesion molecule				
eNOS	: Endothelial nitric oxide synthase				
FCHL	: Familial combined hyperlipidemia				
FGF	Fibroblast growth factor				
FMD	Flow mediated dilatation				
GC	: Guanylate cyclase				
GTP	Guanosine triphosphate				
H_2O_2					
HDL	High density lipoprotein				
HMG-CoA	Hydroxymethylglutaryl coenzyme A				
ICAM	Intercellular adhesion molecule-1				

	Intercellular adhesion molecules Interferon
	Ischemic heart disease
	Interleukin
	Inducible nitric oxide synthase
	Inositol triphosphate
	Lecithin cholesterol acyl transferase
	Low density lipoprotein
	Low density lipoprotein cholesterol
	Leukocyte function associated antigen
L-NA	N ^G -nitro-L-arginine
	N ^G -nitro-L-arginine methylester
L-NMMA :	N ^G -monomethyl-L-arginine
	Lipoprotein(a)
	Lipopolysaccharides
	Lysophosphatidylcholine
	Myocardial infarction
NADPH :	Nicotine adenine dinucleotide phosphate
NF _K B :	Nuclear factor Kappa-B
nNOS :	Neuronal nitric oxide synthase
NO :	
NOS :	Nitric oxide synthase
O ₂ :	Superoxide
oxLDL :	Oxidized low density lipoprotein
PAD :	Peripheral arterial disease
PADGEM :	Platelet activation dependent granule external membrane
	protein
PAI-1 :	Plasminogen activator inhibitor
PAOD :	Peripheral arterial occlusive disease
PDGF :	Platelet derived growth factor
PET :	Positron emission tomography
PGI_2 :	Prostacyclin
PKA :	Protein kinase A
	Protein kinase C
PKG :	Protein kinase G
PLC :	Phospholipase C
PMCA :	Plasma membrane pump
QCA :	Quantitative coronary angiography
ROS :	Reactive oxygen species
SFA :	Superficial femoral artery
SIN-1 :	3-morpholino-sydnonimine

SMCs	-	Smooth muscle cells
SNAP	:	S-nitroso-N-acetylpenicillamine
SOD	:	Superoxide dismutase
TC	:	Total cholesterol
TG	:	Triglycerides
TGF - β	:	Transforming growth factor- β
TNF	:	Tumor necrosis factor
t-PA	:	Tissue plasminogen activator
VCAM	:	Vascular cell adhesion molecule
VLDL	:	Very low density lipoprotein
VSMCs	:	Vascular smooth muscle cells
WHHL	:	Watanabe heritable hyperlipidemic
WHO	:	World Health Organization

ABSTRACT

Aim of this work is to detect the expression of eNOS gene in the blood and arterial wall of atherosclerotic occlusive arterial disease patients as well as normal vessels.

This study was carried out on the 40 patients who are suffering from atherosclerotic occlusive arterial disease (23 males and 17 females) and 10 patients (10 male) who are had traumatic arterial injuries as control group. The range of age was 7-95 years for all patients, 42-95 years for the diseased group (POAD), 7-36 years for the control group.

The results of this study showed there is statistical significance in correlation between the two studied groups as there is decrease in expression of eNOS gene in the diseased group than the control group in both tissue (arterial wall) and blood.

Keywords:

Atherosclerotic occlusive arterial disease Nitric Oxide (NO) Nitric Oxide Synthase (NOS) Endothelial Nitric Oxide Synthase (eNOS)

INTRODUCTION

INTRODUCTION

Nitric oxide (NO) is produced by NO synthases (NOS), which oxidize L-arginine to L-citruline NO, the biologically active component of endothelium-derived relaxing factor, has a critical role in the maintenance of vascular homeostasis. Decreased endothelial NO production, as a result of endothelial dysfunction, occurs in the early stage of atherosclerosis and plays a prominent role in endothelium dysfunction. Based on theoretical background, enzymes involved in the metabolism of NO and reactive oxygen species (ROS) play an important role in the development of endothelial dysfunction (**Channon** *et al.*, **2000**).

There are 3 NOS isoforms. All 3 NOS isoforms have a similar molecular structure and require multiple cofactors, including flavins, Nicotine adenine dinucleotide phosphate (NADPH), and tetrahydrobiopterin, that are required to maintain dimerization and NO production (**Arnal** *et al.*, **1999**).

Neuronal (nNOS, or NOS I) and endothelial (eNOS, or NOS III) isoforms are constitutively expressed and are activated by calciumcalmodulin. The inducible isoforms (iNOS, or NOS II) are regulated primarily at the transcriptional level, independent of agonist stimulation and intracellular calcium levels. eNOS, expressed in endothelial cells, is the predominant NOS isoform in the vessel wall. Under basal conditions, eNOS is inactive and remains membrane bound by virtue of myristoylation, palmitoylation, and an inhibitory interaction with caveolin, the principal structural protein in caveolae (Channon *et al.*, 2000).

Shear stress is an important physiological stimulator of eNOS activity, causing rapid membrane release and upregulating eNOS gene expression by transcriptional activation of the eNOS promoter. After vessel injury or in disease states, iNOS expression may be induced in the media, atherosclerotic plaque, or neointima (*Kubes et al., 1991*).

The role of endothelial derived NO in the regulation of vascular tone and organ blood flow is well established. Although three isoforms of the human nitric oxide synthase (NOS) gene family are known to exist, it is the endothelial nitric oxide synthase (eNOS) gene that accounts for the synthesis and release of bioactive endothelium derived relaxing factor (EDRF) (*Wang and Marsden, 1995*).

In addition to relaxing vascular smooth muscle cells, endothelium derived NO inhibits platelet and leukocyte adhesion to vascular endothelium, inhibits vascular smooth muscle cell migration and growth, and limits the oxidation of athergenic low-density lipoprotein. These actions suggest that endothelial NO may have an important atheroprotective role beyond its effect on vessel tone and blood pressure and that an alteration in the activity of the vascular NO system could contribute to the pathogenesis of atherosclerosis (*Anouk and Marsden, 2000*).

Many investigators have chosen eNOS as a candidate for vascular gene transfer on the basis that eNOS is the predominant isoform present in the normal vessel wall. eNOS gene transfer