HAEMOSTATIC DISORDERS IN CHILDREN WITH CONGENITAL CYANOTIC HEART DISEASES

Thesis

Submitted for Complete Fulfillment of The Master Degree (M.Sc) in Pediatrics

By

Ahmed Mohamed Dohain (M.B.; B.Ch., Cairo University)

Under the supervision of

Prof. Dr. Nabil Abd El-Aziz

Professor of Pediatrics, Faculty of Medicine, Cairo University

Dr. Ranya Aly Hegazy

Assistant Professor of Pediatrics, Faculty of Medicine, Cairo University

Dr. Osama Mohamed Abd El-Aziz

Lecturer of Pediatrics, Faculty of Medicine, Cairo University

Faculty of Medicine Cairo University 2011

بيم الله الرحمن الرحيم

و فوق كل ذي علم عليم

سورة يوسف الآية رقم: ٧٦

صدق الله العظيم

ABSTRACT

Patients with cyanotic congenital heart disease (CCHD) and associated secondary polycythemia are susceptible to develop coagulation abnormalities. Our study included one hundred patients with CCHD, 37% had TOF, 35% had TGA and other CCHD as TAPVR, single ventricle and pulmonary atresia. The age was between 4 days and 16 years. There was a statistically significant positive (direct) correlation between age, Hb% and HCT. Also, there was a statistically significant positive (direct) correlation between O2 and platelet count. We found that the indications of partial exchange transfusion were polycythemia, symptoms or both and it improved the platelet count so we recommend PET for patients with CCHD who are associated with secondary polycythemia, thrombocytopenia or other coagulation defects as a preoperative preparation for cardiac surgery because it will decrease the risk of postoperative bleeding in those patients. The study showed that patients with congenital cyanotic heart diseases may need pre and post operative management as vitamin k, FFP, platelet transfusion to improve the coagulation function and decrease the risk of post operative bleeding.

Keywords:

CCHD- PET- hemostatic disorders- thrombocytopenia

ACKNOWLEDGEMENT

First and foremost thanks are to ALLAH the most beneficent kind and merciful

Word are never be able to express my deepest gratitude to all those who helped me during preparation of this study.

I am most grateful to **Prof. Dr. Nabil Abd El Aziz**, Professor of Pediatrics, Faculty of Medicine, Cairo University, who kindly supervised and motivated the performance of the work with keen interest and indispensable advice.

I am gratefully honored to express my sincere appreciation to **Dr. Ranya Aly Hegazy**, Assistant Professor of Pediatrics, Faculty of Medicine, Cairo University, for her supervision and guidance.

I would like to express my thanks to **Dr. Osama Abd El-Aziz**, Lecturer of Pediatrics, Faculty of Medicine, Cairo University, for his valuable scientific supervision and guidance

Finally, I have to extend by gratefulness and deep thanks to all my professors in the pediatric department for their continuous help, encouragement and education.

To my Mother and Father

CONTENTS

Page

•	Introd	luction	
	Aim o	of the Work 4	
	Review	w of Literature 5	
	0	Chapter I: physiology of coagulation	
	0	Chapter II: pathophysiology of bleeding disorders in CCHD 20	
	0	Chapter III: Laboratory tests for hemostatic abnormalities in patients with CCHD	
	0	Chapter IV: extend of the problem: perioperative hemorrhage	
	0	Chapter V: Preoperative preparation of the patient	
	0	Chapter VI: Strategies to decrease blood loss and the need for blood transfusion	
	0	Chapter VII: Management of excessive bleeding after surgery 55	
•	Patients and Methods 58		
•	Results		
•	Discussion		
•	 Conclusion and Recommendations		
•	• Summary		
•	References 101		
•	Arabic Summary 113		

LIST OF TABLES

No.	Title	Page
1	Hemostatic abnormalities observed in patients with cyanotic congenital heart disease	
2	Characteristics specific to pediatric patients with cyanotic congenital heart disease that make them prone to excessive bleeding	33
3	Strategies to decrease blood loss and the need for blood transfusion	39
4	Comparison of data from studies on aprotinin in children	43
5	Results of studies performed on children with ɛ-aminocaproic acid	47
6	Results of some other techniques of blood conservation used in children	54
7	Descriptive statistics of the echocardiographic diagnosis in the whole sample	67
8	Descriptive statistics of laboratory investigations (before intervention) in the whole sample	68
9	The frequencies, percentages and results of the association between age and clubbing	69
10	Results of correlation between age and laboratory investigations before intervention	70
11	Results of correlation between O2 saturation and laboratory investigations before intervention	72
12	Results of correlation between O2 saturation and laboratory investigations (before intervention) with each age category	74
13	The means, standard deviation values and results of comparison between HCT in patients with and without clubbing	74
14	Results of correlation between HCT and other laboratory investigations before intervention	75
15	Results of correlation between HCT and other laboratory investigations (before intervention) with each age category	77
16	Descriptive statistics of laboratory investigations (preoperative) in surgical cases	79
17	Descriptive statistics of laboratory investigations (immediate post- operative) in surgical cases	79
18	Means, standard deviation (SD) values and results of comparison between laboratory investigations pre-operative and immediately post-operative	80
19	Descriptive statistics of the type of operation in surgical cases	81
20	Descriptive statistics of the type of bleeding management in surgical cases	82
21	Results of correlation between amount of bleeding and laboratory investigations pre-operatively	84

No.	Title	Page
22	Descriptive statistics of laboratory investigations after management	84
	of bleeding in surgical cases	
23	3 Means, standard deviation (S.D) values and results of comparison	
	between laboratory investigations immediately post-operative and	
	after management of bleeding	
24	Descriptive statistics of the number of PET	88
25	Descriptive statistics of laboratory investigations before PET	88
26	Descriptive statistics of laboratory investigations after PET	88
27	Means, standard deviation (SD) values and results of comparison	89
	between laboratory investigations before and after PET	

LIST OF FIGURES

No.	Title	Page
1	Physiologic coagulation cascade	
2	Regulation of coagulation	
3	Management of excessive bleeding after surgery based on the	
	laboratory results. FFP, fresh frozen plasma	
4	3 way stopcock	64
5	6-french femoral sheath	64
6	Central cyanosis	64
7	Clubbing	64
8	Right 6-french femoral sheath	64
9	Clubbing	64
10	5-french femoral sheath	65
11	5-french femoral sheath	65
12	Gender distribution in the whole sample	68
13	Echocardiographic findings in the whole sample	68
14	Comparison between clubbing in different age categories	69
15	Positive correlation between age and Hb%	70
16	Positive correlation between age and HCT	71
17	Negative correlation between age and MCV	71
18	Negative correlation between age and MCH	71
19	Negative correlation between age and PC	72
20	Positive correlation between O2 saturation and PLT	73
21	Mean HCT in patients with and without clubbing	75
22	Negative correlation between HCT and PLT	76
23	Negative correlation between HCT and PC	76
24	Gender distribution in surgical cases	78
25	Echocardiographic findings in surgical cases	78
26	Clubbing prevalence in surgical cases	79
27	Pre-operative management of coagulation defects in surgical cases	81
28	Type of operations in surgical cases	81
29	Prevalence of bleeding in surgical cases	82
30	Positive correlation between amount of bleeding and age	83
31	Negative correlation between amount of bleeding and O2 saturation	83
32	Gender distribution in PET cases	87
33	Echocardiographic findings in PET cases	87
34	Indications for PET	87

ABBREVIATIONS

ACT APTT AT	The activated clotting time Activated partial thromboplastin time Antithrombin
BSA	
	Body surface area Plalack Taussia shunt
BT shunt	Blalock-Taussig shunt
CCHD	Cyanotic congenital heart disease
CHD	Congenital heart disease
CNS	Central Nervous System
CPB	Cardiopulmonary bypass
CT	Computerized Tomography
DIC	Disseminated Intravascular Coagulation
DVT	Deep Vein Thrombosis
EACA	e-aminocaproic acid
ELT	The euglobulin ck lysis time
FDPs	Fibrin degradation products
FFP	Fresh frozen plasma
Hb	Hemoblobin
HCT	Hematocrite
ICU	Intensive care unit
MCH	Mean corpuscular hemoglobin
MCV	Mean corpascular volume
MRA	Magnetic resonance angiography
MRI	Magnetic resonance imaging
OR	Operation room
PA	Pulmonary angiography
PAI	Plasminogen activator inhibitor
PC	Prothrombin concentration
PE	Pulmonary embolus
PET	Partial exchange transfusion
PF	Platelet Phospholipid
PLT	Platelet
РТ	Prothrombin time
PTT	Partial thromboplastin time
SD	Standard deviation
TA	Tranexamic acid
TAPVR	Total anomalous pulmonary venous return
	· · · · · · · · · · · · · · · · · · ·

TF	Tissue factor
TFPI	Tissue factor pathway inhibitor
TGA	Transposition of great arteries
TOF	Tetralogy of fallot
TT	Thrombin time
US	Ultrasonography
VSD	Ventricular septal defect

INTRODUCTION

The incidence of congenital heart disease (CHD) is approximately six to eight in 1,000 live births. While the majority of these infants are born with mild disorders, 15 percent are potentially life-threatening and a quarter of these infants are discharged after their birth hospitalizations without being diagnosed. Of newborns with potentially fatal forms of CHD, one-third have cyanotic lesions. Early recognition, emergent stabilization, and transport to an appropriate cardiac care center are critically important in the outcome of these patients (Wren *et al.*, **2008**).

Polycythemia in patients with cyanotic heart disease can cause a hyperviscosity state. These patients may have headache, increased cyanosis, decreased exercise tolerance, and stroke. The only treatment is removal of red cells by phlebotomy, partial-exchange transfusions, or erythrocytapheresis (James and Corrigan, 2008).

Patients with cyanotic congenital heart disease (CCHD) and associated secondary polycythemia are susceptible to develop coagulation abnormalities. Several coagulation defects, including thrombocytopenia, factor deficiencies, fibrinolysis, and disseminated intravascular coagulation (DIC), have been reported in these patients (**Depaak** and **Virmani, 2002**).

CCHD is associated with thrombocytopenia. The etiology is unclear, but the mechanism appears to involve decreased production of megakaryocytes (Lill *et al.*, 2006).

There is an inverse relationship between the blood oxygen saturation and the hemoglobin in patients with CCHD, especially after the age of 3 years. Thus, the degrees of cyanosis and polycythemia dictate the presence of the thrombocytopenia. The thrombocytopenia is rarely severe. Additionally, the platelets do not function normally in vitro tests. Thus, the platelet defect in patients with CCHD is both quantitative and qualitative. Spontaneous bleeding is unusual, but bleeding may be excessive with injury and surgery. The treatment is to correct the polycythemia and hypoxia, which allows the platelet count and function to return to normal. Platelet transfusions are rarely needed. Corticosteroids and intravenous globulin therapies are not helpful (James and Corrigan, 2008).

Extracorporeal circulation introduces additional problems with regard to blood coagulation and may further interfere with an already faulty clotting mechanism, thereby aggravating the likelihood of hemorrhage in these patients. On the other hand it may be beneficial by providing an exchange transfusion of fresh blood which contains necessary clotting factors. As a result of these conflicting effects it is difficult to predict the occurrence of hemorrhage after the use of extracorporeal circulation (**Fletcher** *et al.*, **2000**).

Given that definitive surgical correction of congenital lesions in neonates involves complex repairs with a long duration of cardiopulmonary bypass (CPB) and multiple extracardiac suture lines, these coagulopathies predispose the patient to increased bleeding and transfusion requirements perioperatively (Guay and Rivard, 1996). It is reasonable to believe that avoiding excessive hemorrhage after cardiac surgery with CPB in these patients is an important factor in improving surgical outcome. Understanding the management of hematologic disorders that accompany CCHD is an important clinical priority for the cardiac anesthesiologist. Therapeutic guidelines have focused primarily on the management of polycythemia; however, other controversies exist (**Depaak** and **Virmani, 2002**).

The present work presents the pathophysiology of coagulation abnormalities in these patients and current management strategies.

AIM OF THE WORK

The present work aims at:

- Identifying the prevalence, risk factors and lines of management of hemostatic disorders among children with CCHD.
- Study the effect of partial exchange transfusion on the platelet count and other coagulation functions in patients with CCHD.
- Study the risk factors, lines of management of postoperative bleeding and changes in coagulation function in the patients with CCHD who undergo cardiac surgeries.