

Faculty of Medicine Internal Medicine dep.

A prospective study of the pathogenesis and the management of portal hypertension

ESSAY

Submitted for partial Fulfillment of the Master Degree

In Internal Medicine

By

Amr Mohammad Fawzy

Under Supervision of

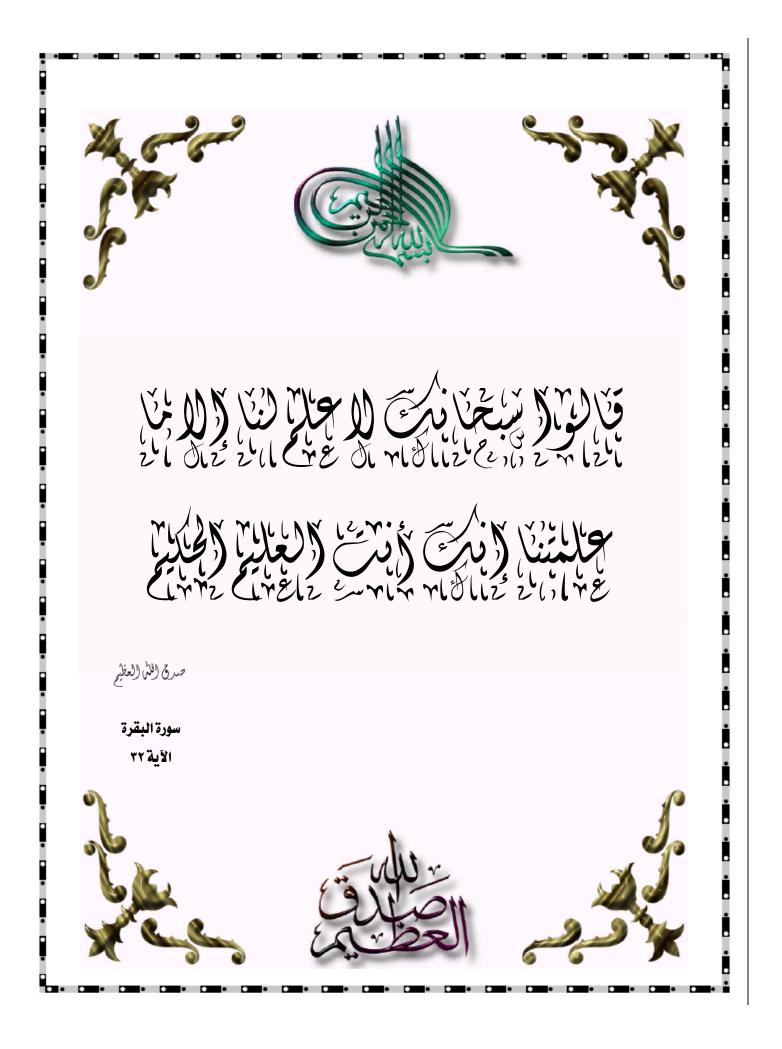
Prof. Magdy Abd El Aziz El Guinaidy

Professor of Internal Medicine and Hepatology Faculty of Medicine - Ain Shams University

Asst. Prof. Adel Ahmad Mahmoud

Assistant Professor of Internal Medicine and Hepatology Faculty of Medicine - Ain shams University

DR. Sherif Sadek Taha Shabana


Lecturer of Internal Medicine and Hepatology Faculty of Medicine - Ain shams university

> Faculty of Medicine Ain Shams University (2011)

كلية الطب قسم أمراض الباطنة

دراسة المأمول في آلية تولد و علاج ارتفاع الضغط بالوريد البابي مقالة مقدمة من الطبيب عمرو محمد فوزي محمد توطئه للحصول على درجة الماجستير في الباطنة العامة تحت إشراف الأستاذ الدكتور/ مجدي عبد العزيز الجنيدي أستاذ الباطنة والكبد بكلية الطب - جامعة عين شمس أستاذ مساعد / عادل أحمد محمود أستاذ مساعد الباطنة والكبد بكلية الطب - جامعة عين شمس دكتور / شريف صادق طه شبانة مدرس الباطنة والكبد بكلية الطب – جامعة عين شمس كليت الطب جامعة عين شمس 7.11

ACKNOWLEDGMENT

Thanks to **ALLAH** firstly and lastly.

I would like to express my deepest gratitude and sincere thanks to **Prof. Magdy Abd El Aziz El Guinaidy,** Professor of Internal Medicine and Hepatology, Faculty of Medicine, Ain Shams University, for his instructive supervision, generous support, close guidance and utmost interest throughout this work.

My grateful thanks to **Dr. Adel Ahmad Mahmoud,** Assistant Professor of Internal Medicine and Hepatology, Faculty of Medicine, Ain shams University, for his kind supervision, valuable help and continuous advice during this work.

My deep gratitude to **DR. Sherif Sadek Taha Shabana,** Lecturer of Internal Medicine and Hepatology, Faculty of Medicine, Ain shams university for his kind guidance, generous help, support and encouragement throughout this work.

Amr Mohammad Fawzy Mohammad

CONTENTS

Subjects	Page
Introduction and aim of the work	
Review of literature	
Anatomy of the liver	4
Anatomy of the portal vein	6
The porto-systemic anastomosis	8
Microscopic anatomy and histological structure	9
Extracellular matrix in the normal liver	18
Portal hypertension	19
Epidemiology and natural history	20
Etiology and classification	22
Pathogenesis of portal hypertension	25
(A) Increased resistance to the portal blood flow	26
At the pre-hepatic level	26
At the post-hepatic level	27
At the intrahepatic level	29
Cirrhotic PHT	29
Pathogenesis of increased resistance in cirrhotic PHT	30
I- increased IHVR due to mechanical component in cirrhosis	31
A-Chronic activation of the wound healing reaction	32
B-Oxidative stress and fibrogenesis	43
C-Derangement of epithelial-mesenchymal interactions	
and epithelial-mesenchymal transition in	45
cholangiopathies	
Host factors and the progression of fibrosis	46
II- The dynamic component of increased IHVR in cirrhosis	48
(B) Increased portal blood flow	55
I-Hyperdynamic circulation and the increased portal blood flow	55

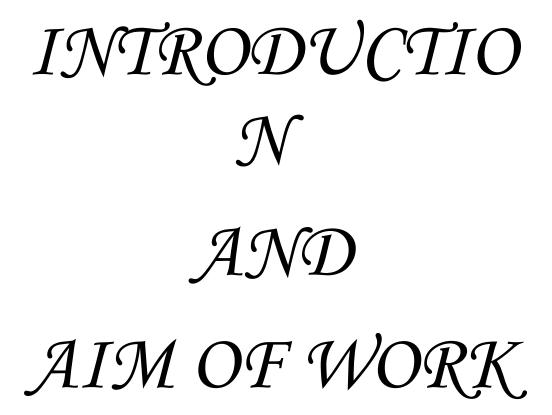
Subjects	Page
(a)Vasodilators and the development of hyperdynamic circulation	56
(b)Hypervolemia	61
(c)Hepatocellular insufficiency	64
(d)Porto-systemic collaterals and hyperdynamic circulation	64
II-Angiogenesis and the increased portal blood flow	66
Pathogenesis of the complications of portal hypertension	70
Pathogenesis of variceal rupture and bleeding	70
Pathogenesis of ascites and the development HRS in PHT	71
Diagnosis of portal hypertension	75
Investigations for diagnosing and monitoring patients with PHT	78
Endoscopy as an alternative to HVPG measurement	83
Endoscopic ultrasound	87
Possible alternatives to endoscopy (noninvasive assessment of PHT)	94
Treatment of portal hypertension	101
Current treatment of PHT (treatment of complications)	102
Treatment of varices	102
Primary prophylaxis against variceal hemorrhage	104
Treatment of an acute variceal bleeding episode	113
Secondary prophylaxis against variceal rebleeding	135
Treatment of ascites and HRS	141
Treatment of other ascites-related complications	148
Treatment of hepatic encephalopathy	150
Prospective therapy for treating portal hypertension	154
Targeting the dynamic component of increased IHVR	155
Targeting the mechanical component of increased IHVR	163
Antiangiogenic therapy in treatment of PHT	178
Summary and Conclusion	181
References	184
Arabic summary	١

LIST OF ABBREVIATIONS

[Ca21]i	Intracellular calcium
AASLD	American Association for the Study of Liver Diseases
ACE	Angiotensin converting enzyme
Ad5LacZ	Control adenovirus (lack the pro-human MMP-1 DNA)
Ad5MMP-1	Adenovirus infected with pro-human matrix
	metalloproteinase-1 complementary DNA
AST	Aspartate aminotransferase
A–V shunts	Arterio-venous shunts
AzBF	Azygos blood flow
BCS	Budd-Chiari syndrome
BH4	Tetrahydrobiopterin
B-RTO	Balloon occluded retrograde transvenous obliteration
cAMP	Cyclic adenosine monophosphate
CB1 and CB2	Cannabinoid receptors
CD-EUS	Color Doppler endoscopic ultrasound
cGMP	Cyclic guanosin mono phosphate
CGRP	Calcitonin gene related protein
CLD	Chronic liver disease
СО	Carbon monoxide
COX	Cyclooxygenase enzyme
CSPH	Clinically significant portal hypertension
СТ	Computed tomography
CTGF	Connective tissue growth factor
CYP2E1	Cytochrome P450 2E1
DDUS	Duplex doppler ultrasound
ECM	Extracellular matrix
EGD	Esophago-gastro-duodenoscopy
EGF	Epidermal growth factors
EIS	Endoscopic injection sclerotherapy
EMT	Epithelial mesenchymal transition
ET-1	Endothelin-1
EUS	Endoscopic ultrasound
EVL	Endoscopic variceal ligation
Fas/FasL	Apoptotic mediators

FGF	Fibroblast growth factor
FHVP	Free hepatic venous pressure
FXR	Farnesoid X receptor
GEV	Gastro-esophageal varices
GPCR	G-protein-coupled receptors
GPCR	G-protein-coupled receptors
GRK-2	G-protein-coupled receptor kinase 2
H2S	Hydrogen sulfide
HCV	Hepatitis C virus
HE	hepatic encephalopathy
HGF	Hepatocyte growth factor
HMGCO	Hydroxymethyl glutaryl coenzyme A
НО	Heme oxygenase
HRS	Hepatorenal syndrome
HSC	Hepatic stellate cells
HVPG	Hepatic venous pressure gradient
IHVR	Intra-hepatic vascular resistance
IL	Interleukin
INR	International normalized ratio
IP3	Inositol triphosphate
IV	Intravenous
IVC	Inferior vena cava
JNKs	c-jun N-terminal kinases
LPS	Lipopolysaccharide
LVP	Large volume paracentesis
МАРК	Mitogen activated protein kinase
MCP-1	Monocyte chemo-attractant protein 1
MCP-1	Monocyte chemo-attractant protein 1
МСТЕ	Multidetector computer tomographic esophagography
MDA	Malondialdehyde
MELD	Model of end stage liver disease
MLC	Myosin light chain
MMP	Matrix-metalloproteinases
MRI	Magnetic resonance imaging
mRNA	Messenger RNA
NK	Natural killer

NO	Nitric oxide
NOS	Nitric Oxide Synthetase
NPY	neuropeptide Y
OLT	Orthotopic liver transplant
para-GCV	Para gastric collateral veins
para-OCVs	Para-esophageal collateral veins
PDGF	Platelet derived growth factor
PGI2	Prostaglandin I 2
PHG	Portal hypertensive gastropathy
PHT	Portal hypertension
ΡLCβ	Phospholipase C β
PIGF	Placental growth factor
PPAR-γ	peroxisome proliferators activated receptors gamma
PTFE	Polytetrafluoroethylene
PTVE	Percutaneous trans-hepatic embolization of varices
PVT	Portal vein thrombosis
Rho	A small, monomeric guanosine triphosphate-binding
KIIO	protein from the ras super family
ROS	Reactive oxygen species
RTUS	Real time ultrasound
SAAG	Serum to ascites albumin gradient
SBP	Spontaneous bacterial peritonitis
SEC	Sinusoidal endothelial cells
SHP	Small heterodimer partner
SOD	Super oxide dysmutase
TGF	Transforming growth factor
TGF-β	Transforming growth factor beta
Th1	T-lymphocyte helper cell type 1
TIMP	Tissue inhibitors of metalloproteinase
TIPS	Transjugular intrahepatic porto-systemic stent shunts
ΤΝFα	Tumor necrosis factor alpha
TRAIL	Tumor necrosis factor-related apoptosis-inducing ligand
TXA2	Thromboxane A2
TXA2	Thromboxane A2
US	ultrasound
VEGF	Vascular endothelial cell growth factor


VEGFR	VEGF receptor
VEGFR2	Vascular endothelial growth factor receptor 2
Vs.	Versus
WHVP	Wedged hepatic venous pressure
α-SMA	Alpha smooth muscle actin

LIST OF FIGURES

FIGURE	Page
Fig. 1 Shows lobes of the liver "inferior view"	4
Fig. 2 Segmental anatomy of the liver	5
Fig. 3 Course and termination of the portal vein	7
Fig. 4 Tributaries of portal vein.	8
Fig. 5 The classic liver lobule.	10
Fig.6 Diagram showing hepatic cords and sinusoidal arrangement.	10
Fig.7 Classic liver lobule	11
Fig. 8 hepatic cords, sinusoids, space of Disse and bile canaliculi	12
Fig.9 Morphology of hepatic stellate cells in normal liver.	15
Fig. 10 Ultrastructure of cultured stellate cells.	16
Fig. 11 Physiopathology of portal hypertension	25
Fig. 12 Illustration of splenic venous thrombosis and fundal varices	27
Fig. 13 Pathophysiology of portal hypertension	30
Fig. 14 Matrix elements and fibrotic changes.	33
Fig. 15 Source of myofibroblast	35
Fig. 16 Pathways of hepatic stellate cell activation and resolution	37
Fig. 17 Different mechanisms involved vascular dysfunction in PHT.	63
Fig. 18 Diagram illustrating the synergism between vascular	69
endothelial growth factor (VEGF) and placental growth factor (PLGF).	
Fig. 19 Pathophysiology of variceal bleeding.	71
Fig. 20 Pathophysiology of ascites and hepatorenal syndrome.	73
Fig. 21 A patient with IVC thrombosis and dilated abdominal veins.	78
Fig. 22 A, B, C & D Principles of measuring HVPG.	81-82
Fig. 23 Endoscopic view of large esophageal varices.	85
Fig. 24 (a) Upper endoscopy showing serpiginous varices	85
Fig. 25 Sigmoidoscopy (a, b) and colonoscopy (c) showing dilated	86
venous collaterals and spider angiomas.	00
Fig.26 Para-OCV	90
Fig.27 (a) Endoscopic ultrasound (EUS) (b) Doppler image showing	90
para-esophageal collateral veins	70
Fig.28 Trans-abdominal ultrasound image with Doppler	96
Fig.29 Endoscopy shows two varices that have been banded.	111
Fig. 30 The flow chart of primary prophylaxis of Variceal bleeding.	112
Fig. 31 Emergency management of acute variceal bleeding algorithm.	126
Fig. 32 Algorithm of the secondary prophylaxis.	139
Fig. 33 Rationale basis for the treatment of portal hypertension.	154
Fig. 34 statins in decreasing IHVR.	157

LIST OF TABLES

TABLE	Page
Table 1: Illustrates the classification of portal hypertension according to the anatomic site of increased resistance to portal blood flow	23
Table 2: Summarizes various agents regulating HSC contractility and their mechanism of action	51
Table 3: Summarizes the clinical features of cirrhosis	76-77
Table 4: Predictors of variceal hemorrhage	84
Table 5: Calculation of NIEC index	85
Table 6: Schedule of endoscopy surveillance	140

Introduction and Aim of the Work

Introduction:

Portal hypertension (PHT) is a common clinical syndrome consequence of almost all chronic liver diseases. It is defined as the pathologic increase of portal pressure, in which the gradient between portal vein and the inferior vena caval pressure is increased above the upper normal limit of 5 mmHg (*Sanyal et al., 2008*).

The importance of this syndrome is defined by the frequency and severity of its complications (Porto-systemic collaterals, variceal hemorrhage, ascites, hepato-renal syndrome, porto-systemic encephalopathy and hepato-pulmonary syndrome) with the rupture of esophageal varices representing the main and most lethal complications. The appearance of these complications defines the progression from compensated to decompensated liver disease *(D'Amico and de Franchis, 2003)*.

PHT is initiated by increased hepatic outflow resistance as a result of chronic activation of hepatic stellate cells (HSC) and the mediator action on it. An increase in the portal blood inflow occurs as a result of the increasing vascular tone, expanded plasma volume and splanchnic vasodilatation in response to many mediators. This maintains and aggravates portal hypertension (*Cichoz-Lach et al., 2008*).

The most common world wide cause of PHT is cirrhosis due either to alcoholic hepatitis, in western countries, or due to post hepatitic cirrhosis specially due to HCV in developing countries like Egypt. While bilharzial periportal fibrosis represents another important cause in Egypt (*Gryseels et al., 2006*).

Morbidity and mortality associated with these treatment strategies are still high, which should direct our attention for developing mew screening methods and diagnostic tools, specially the non invasive of them, for early detection of the disease. Also, to find out new, effective therapeutic modalities that can have better outcome when implied early in the course of the disease (*D'Amico and de Franchis, 2003, Bosch et al., 2010 and Thabut and Shah, 2010*).

Current treatment modalities for PHT rely on decreasing portal blood inflow to reduce the elevated portal venous pressure (*D'Amico et al., 1999*). While future therapy for portal hypertension is expected to be more causal in nature as it should be able to stop the progression of, or even revert, the original liver disease like fibrosis and hepatic stellate cell (HSC) activation as well as interfering with any other pathologic state that can maintain or aggravate PHT like angiogenesis and the state of endothelial dysfunction (*Bosch et al., 2010 and Thabut and Shah, 2010*). This prospective therapy seems promising, offering portal hypertensive patients more hope about the possibility of better treatment in the future.