NON INVASIVE PREDICTION OF VARICES IN PATIENTS WITH LIVER CIRRHOSIS

Thesis Submitted In Fulfillment for the Master Degree in Tropical Medicine

MARWA KHAIRY MEHASSEB

MB.B.Ch

SUPERVISORS

PROF. DR. AYMAN YOSRY ABD EL-RAHIM

Professor of Tropical Medicine Faculty of Medicine – Cairo University

PROF. DR. RABAB FOUAD EMAM

Professor of Tropical Medicine Faculty of Medicine – Cairo University

DR. MOHAMED SALAH ABD EL-BARY

Lecturer of Tropical Medicine Faculty of Medicine – Cairo University

> Faculty of Medicine Cairo University 2007

ABSTRACT

Oesophageal varices are one of the most important complications of liver cirrhosis and portal hypertension. Bleeding oesophageal varices is the most common cause of upper GI haemorrhage in Egypt with high mortality rate.

<u>Aim of work</u>: to develop a method for prediction of the presence and the size of varices using non invasive clinical, laboratory, ultrasonographic and Doppler parameters.

<u>*Patients and methods*</u>: 200 patients with liver cirrhosis with no history of variceal haemorrhage were subjected to complete history taking, thorough clinical examinations, laboratory investigations, abdominal ultrasonography and Doppler study of the portal and splenic veins. Upper endoscopy was done classifying patients into 3 groups; patients without varices, patients with small sized varices and patients with large sized varices.

<u>**Results:**</u> Using multivariate logistic regression analysis, biphasic and monophasic hepatic veins flow pattern, bidirectional and Hepatofugal portal vein direction of flow, decreased portal vein velocity and the presence of ascites were the significant variables for prediction of presence of varices. Shrunken liver and low serum albumin were the significant variables for prediction of large sized varices.

<u>*Key words*</u>: Prediction of varices – large varices – Non invasive.

Acknowledgement

First of all, Thanks to GOD, without his will, nothing could have been achieved.

My gratitude to **Prof. Dr. Ayman Yosry** Professor of Tropical Medicine, Cairo University, for his support and endless advices and help. I wish one day to have his way of thinking and part of his perfectionism and part of his knowledge.

My deep thanks and appreciation to **Prof. Dr. Rabad Fouad**, Professor of Tropical Medicine, Cairo University, for her strict supervision and revision of this work, She gave me much of her time, experience and support, her valuable comments, efforts and collaboration were the causes to complete this work properly, so no words can express my gratitude to her.

I would like to thank **Dr. Mohamed Salah**, Lecturer of Tropical Medicine, Cairo University, for his effort, time, kindness, and generous help, without his help this work could not be done.

I would like also to acknowledge the magnificent encouragement, care and support of **Prof. Dr. Serag Zakaria**, head of Tropical Medicine department, Cairo University. Thanks for always being a father and guidance before being a teacher.

To all my professors, to whom I have the honor to belong, to my professors who welcomed me, who encouraged and supported me, who taught and advised me, who gave me their confidence, who trained me and pushed me forwards. Special appreciation to **Prof. Dr. Maysa El-Razky** for being always behind me, for her generous care, advices and sympathy. I wish to express to all my colleagues in Tropical medicine department, Cairo university, my deepest appreciation. Thanks for their help and endless support.

My deepest gratitude for all members of the endoscopy unit for helping me in completing this work and I would like to thanks **Prof. Dr. Sameh Labib** for the facilities he gave to me to perform this work.

I would like to thanks my family for their endless support and care for my whole life. They were always helping and encouraging me to continue and finish this work. I really owe to them so much.

Last, but certainly not least, I owe to the patients included in this study, the whole of it and to all our Kasr El-Aini patients my own life. May God alleviate their sufferings and may all our efforts be just for their own benefit.

TABLE OF CONTENTS

Introduction and aim of the work	1
Review of literature	
 <u>Chapter I</u>: Pathophysiology of portal hypertension 	5
 <u>Chapter II</u>: Diagnosis of portal hypertension 	26
<u>Chapter III</u> : Non invasive prediction of varices in cirrhotic patients	60
Patients and Methods	87
Results	98
Discussion	149
Summary and Conclusions	162
Recommendations	165
References	166
الملخص العربي	

<u>List of Figures</u>

Figure I	Distribution of portosystemic collaterals.	8
Figure II	Contributing factors to portal hypertension.	10
Figure III	Phenotypic features of HSCs activation during liver injury and resolution.	14
Figure IV	Types of gastric varices.	39
Figure V	Classification of enhancement pattern around lower oesophageal lumen.	81
Figure 1	Classification of the studied patients according to the result of the upper GIT endoscopy.	99
Figure 2	Comparison between patients without and with varices regarding serum albumin, PT, PC and urea level.	113
Figure 3	Comparison between patients without and with varices regarding platelets and WBCs count.	113
Figure 4	Comparison between patients without and with varices regarding MELD score.	114
Figure 5	Comparison between patients without and with varices regarding their Child's scoring.	115
Figure 6	Percentage of varices in each Child's group patients.	116
Figure 7	Comparison between patients without and with varices regarding the size of the right lobe by ultrasonography.	117

Figure 8	Comparison between patients without and with varices regarding the hepatic veins pattern by Doppler ultrasonography.	118
Figure 9	Comparison between patients without and with varices regarding mean PVV) and PVF.	120
Figure 10	Comparison between patients without and with varices regarding the portal vein CI.	120
Figure 11	Comparison between patients without and with varices regarding the portal vein direction of flow.	121
Figure 12	Comparison between patients without and with varices regarding the splenic size and volume.	122
Figure 13	Comparison between patients without and with varices regarding the splenic vein diameter and cross sectional area.	124
Figure 14	Comparison between patients without and with varices regarding the splenic blood flow volume and the congestion index.	124
Figure 15	Comparison between patients without and with varices regarding ascites detected by abdominal ultrasonography.	125
Figure 16	Comparison between patients without and with varices regarding portosystemic collaterals detected by abdominal ultrasonography	127
Figure 17	Comparison between patients without and with varices regarding platelets count/spleen diameter ratio.	128

Figure 18	ROC curve for the prediction of varices.	131
Figure 19	Comparison between patients with small and with large varices regarding serum albumin level.	134
Figure 20	Comparison between patients with small and with large varices regarding hepatic veins pattern.	136
Figure 21	Comparison between patients with small and with large varices regarding splenic volume.	138
Figure 22	Comparison between patients with small and with large varices regarding their Child's score.	141
Figure 23	Percentage of small and large varices in each Child's group of patients in the study.	142
Figure 24	ROC curve for the prediction of large sized varices.	148

<u>List of Tables</u>

Table I	Action of vasoactive agents on hepatic stellate cells.	15
Table II	Pugh's Modification of Child's Classification.	32
Table III	Appearance of portosystemic collaterals by abdominal ultrasonography.	49
Table IV	Ultrasonographic score for the prediction of presence of varices in patients with hepatospleinc schistosomiasis.	65
Table V	Doppler sonoscore for the risk assessment of variceal haemorrhage in patients with liver cirrhosis.	78
Table 1a	Demographic features of the studied patients.	98
Table 1b	Sex distribution of the studied patients.	98
Table 2	Clinical finding in the examined patients.	100
Table 3	Laboratory data of the studied patients.	101
Table 4	Child scoring of the studied patients	102
Table 5	Liver assessment by abdominal ultrasonography.	103
Table 6	Portal vein diameter and direction of flow.	104

Table 7	Portal vein Doppler study in the studied patients.	104
Table 8	Splenic size and volume of the studied patients.	105
Table 9	Splenic vein diameter in the studied patients.	106
Table 10	Splenic vein Doppler study in the studied patients.	106
Table 11	Ascites by ultrasonography in the studied patients.	107
Table 12	Portosystemic collaterals in the studied patients.	108
Table 13	Platelets count/spleen diameter ratio and Right liver lobe diameter/albumin ratio in the studied patients.	108
Table 14	Varices seen by upper GI endoscopy in the studied patients.	109
Table 15	Signs of impending rupture in patients with varices seen by upper GI endoscopy in the studied patients with varices.	110
Table 16	Congestive gastropathy in patients with varices seen by upper GI endoscopy in the studied patients.	110
Table 17	Clinical findings between patients without and with varices.	111
Table 18	Laboratory data found between patients without and with varices.	112
Table 19	Comparison between patients without and with varices after the modified Child's score.	115

Table 20	Percentage of varices in each Child's group patients.	116
Table 21	Liver assessment by abdominal ultrasonography between patients without and with varices.	117
Table 22	Hepatic veins pattern with Doppler study between patients without and with varices.	118
Table 23	Portal vein study by Doppler ultrasound between patients without and with varices.	119
Table 24	Portal vein direction of flow between patients without and with varices regarding the portal vein direction of flow.	121
Table 25	Splenic size and volume by abdominal ultrasonography between patients without and with varices.	122
Table 26	Comparison between patients without and with varices regarding splenic vein study by Doppler ultrasound.	123
Table 27	Ascites detected by abdominal ultrasonography between patients without and with varices.	125
Table 28	Portosystemic collaterals detected by abdominal ultrasonography between patients without and with varices.	126
Table 29	Platelets count/spleen diameter ratio and right liver lobe diameter/albumin ratio between patients without and with varices.	127
Table 30	Significant statistical parameters (with univariate analysis) in patients with varices.	128 - 129
Table 31	Significant variables for the presence of varices in multivariate analysis	130

Table 32	Clinical findings between patients without and with varices.	132
Table 33	Laboratory data between patients with small varices and patients with large varices.	133
Table 34	Liver assessment by abdominal ultrasonography between patients with small varices and patients with large varices.	134
Table 35	Hepatic veins pattern between patients with small varices and patients with large varices with Doppler study.	135
Table 36	Portal vein study by Doppler ultrasound between patients with small varices and patients with large varices.	136
Table 37	Portal vein direction of flow between patients with small and with large varices.	137
Table 38	Splenic size and volume by ultrasonography between patients with small varices and patients with large varices.	137
Table 39	Splenic vein study by Doppler ultrasound between patients with small varices and patients with large varices.	138
Table 40	Ascites detected by abdominal ultrasonography between patients with small varices and patients with large varices.	139
Table 41	Portosystemic collaterals comparison between patients with small varices and patients with large varices.	140
Table 42	Comparison between patients with small and with large varices regarding their Child's score.	141
Table 43	Percentage of small and large varices in each Child's group of patients in the study.	142

Table 44	Gastro-oesophageal varices detected with upper GI endoscopy between patients with small varices and patients with large varices.	143
Table 45	Congestive gastropathy detected with upper GI endoscopy between patients with small varices and patients with large varices.	144
Table 46	Congestive gastropathy detected with upper GI endoscopy and its relation with Child's scoring.	144
Table 47	Signs of impending rupture of varices detected with upper GI endoscopy between patients with small varices and patients with large varices.	145
Table 48	Signs of impending rupture of varices detected with upper GI endoscopy and its relation with Child's scoring.	146
Table 49	Platelets count/spleen diameter ratio and right liver lobe diameter/albumin ratio between patients with small and large varices	146
Table 50	Significant variables for large sized varices in multivariate analysis.	147
Table 51	Significant variables for the large sized varices in multivariate analysis.	147

LIST OF ABBREVIATIONS

- A: cross sectional area.
- AASLD: American Association for the Study of Liver Diseases.
- ANP: Atrial Natriuretic Peptide.
- AT-II: angiotensin-II.
- CHA: coded harmonic angio.
- CE: capsule endoscopy.
- CI: congestion Index of the Portal Vein.
- CSPH: clinically significant portal hypertension.
- CT: computerized tomography.
- EGD: esophagogastroduodenoscopy
- eNOS: endothelial cell nitric oxide synthetase.
- EUS: endoscopic ultrasonography.
- ETs; endothelins.
- GOVs: gastro-oesophageal varices.
- HSC: hepatic stellate cells.
- HVPG: hepatic venous pressure gradient.
- IGVs: isolated gastric varices.
- IHVR: intrahepatic vascular resistance.
- iNOS: inducible form of NOS.
- LSM: liver stiffness measurement.
- MCP-1: monocyte chemotactic protein 1.
- mean PVV: mean Portal Vein Flow Velocity.
- MELD: model of end stage liver disease.
- MMP-2: metalloproteinase 2.
- MRI: magnetic resonance imaging.
- NE: norepinephrine.

- **nNOS**: neuronal cells.
- NO: nitric oxide.
- NOS: nitric oxide synthetase.
- **NPV:** negative predictive value.
- PC: prothrombin concentration.
- **PDGF**: platelet-derived growth factor.
- PG: prostaglandins.
- **PHT**: portal hypertension.
- **PIGF**: placental growth factor.
- **PPV:** positive predictive value.
- **PT**: prothrombin time.
- **PVF**: portal vein volume flow.
- **RAAS**: renin angiotensin activating system.
- SAAG: serum-ascites albumin concentration gradient.
- SI: splenic index.
- TGF-B: transforming growth factor B.
- TIPSS: transjugular intrahepatic Portosystemic shunt.
- **TNF** α : tumor necrosis factor α .
- UII: urotensin II.