Cytological and molecular studies on the effect of herbicides on *Rhizobium* spp. symbiotic with *Vicia faba*

By

Sherif Edris Ahmed
B.Sc. Agric. Sci. (Genetics), Ain Shams University (1994)

A thesis submitted in partial fulfillment of the requirement for the degree of

Master of Science in Agricultural Science (Genetics)

Genetics Department
Faculty of Agriculture
Ain Shams University

2000
Cytological and molecular studies on the effect of herbicides on *Rhizobium* spp. symbiotic with *Vicia faba*

By

Sherif Edris Ahmed
B.Sc. Agric. Sci. (Genetics), Ain Shams University (1994)

Under the supervision of:

Prof. Dr. S. H. Hassanien
Professor of Genetics, Fac. of Agric. Ain Shams Univ.

Prof. Dr. F. M. EL domyati
Assoc. Professor of Genetics, Fac. of Agric. Ain Shams Univ.

Dr. Wafaa Abdel-Nabby Mohamed
Lecturer of Genetics, Fac. of Agric.Ain Shams Univ.
Approval Sheet

CYTOLOGICAL AND MOLECULAR STUDIES ON THE EFFECT OF HERBICIDES ON RHIZOBIUM SPP. SYMBIOTIC WITH VICIA FABA

By

Sherif Edris Ahmed
B.Sc. Agric. Sci. (Genetics), Ain Shams University (1994)

This thesis for Master of Science degree has been approved by:

Prof. Dr. Ahmed Shawky Hassan
Prof. of Genetics, Fac. of Agric., Zagazig Univ.

Dr. Ahmed Bahieldin Mohamed
Assoc. Prof. of Genetics, Fac. of Agric., Ain Shams Univ.

Prof. Dr. El- Said Hassan Hassanien
Prof. of Genetics, Fac. of Agric., Ain Shams Univ. (Supervisor)

Date of Examination: 14/ 6/ 2000
Acknowledgement

My deepest thanks and gratefulness to who provide me all I have !!!

To ALLA

There are few opportunities in most people’s lives to demonstrate formally one’s gratitude to people who have been mentors and supporters at different steps of our lives. Even though, we do not forget to express our gratitude verbally, the thesis represents a great opportunity to stamp those feeling on paper.

I would like to express my sincere gratitude and deep appreciation to Prof. Dr. El-Said Hassan Hassanein professor of genetics, Department of Genetics, Fac. Agric., Ain shams Univ. for his kind and valuable not only supervision but also encouragement during the progress of this study and through all time which I stayed in his laboratories.

Deep thanks from the bottom of my hart to Dr. Fotouh Mohamed El-Domyati associate professor of genetics, Department of Genetics, Fac. Agric., Ain shams Univ. and Dr. Wafaa Abdel-Nabby Mohamed lecturer of genetics, Department of Genetics, Fac. Agric., Ain shams Univ. for their
sincere help, fruitful advising and valuable supervision not only at the scientific level but also at personal level.

Deep thanks to Dr Ramzy El-Adawy for his helpful guidance and support during the course of this thesis.

Thanks also extended to all members of Molecular Cytogenetic Lab., especially Mr. Ahmed Ramadan, Mr. Abdel sallam El-Tayeb and Mr. Ahmed Mansour and also to all members of Microbial Genetics and Environmental mutagenesis Lab.

Thanks also to all members of Genetics Dept., Fac. Agric., Ain Shams Univ. for their faithful help during all stages of this study.

Sherif Edris
ABSTRACT

Faba bean plays an important role in the national economy and agricultural production for its high nutritional value and various ways of utilization. This study was aimed to investigate the symbiotic relationship between faba bean and rhizobium as affected by some herbicides. Three cultivars of faba bean (Giza 2, Giza 714 and Giza 461) and one Rhizobium leguminosarum strain 481 were tested for symbiotic property in the present of three herbicides (Glyphosate [Roundup], Basagran and Fusilade) at different concentrations. Different parameters such as SDS-PAGE, plasmid profiles optical density (for rhizobium growth and % of leghaemoglobin) and inhibition zone experiment was used to determine the toxicity of these herbicides.

The effect of high dosage of herbicides was found to be more aggressive on faba bean than Rhizobium leguminosarum strain 481. The Basagran herbicide has a high toxicity effect on both faba bean and Rhizobium leguminosarum strain 481. The Rhizobium leguminosarum strain 481 showed the highest resistance and also recovery against Glyphosate (Roundup) herbicide, where the bacteria have biodegraded this herbicide to useful components.
On the other hand, proteins of both rhizobium and faba bean cultivars on the level of SDS-PAGE were effected by treatment with the three herbicides.

Key Words: Vicia faba - faba bean - Rhizobium leguminosarum - herbicide - symbiotic - plasmid - SDS-PAGE - biodegradation.
Contents

I. Introduction
 Pages 1

II. Review of literature
 1. Effect of herbicides on soil bacteria
 1.1 Photosynthesis inhibitor
 1.2 Pigment inhibitor
 1.3 Seedling growth inhibitor
 1.4 Lipid synthesis inhibitors
 1.5 Amino acid synthesis inhibitors
 1.6 Growth regulator herbicides
 2. Plasmids and symbiosis in rhizobium
 3. Protein
 Pages 4

III. Materials and methods
 1. Materials
 1.1 Plant material
 1.2 Microbial strain
 1.3 Herbicides
 1.4 Media
 1.4.1 Trypton-yeast (TY) Medium
 1.4.2 Yeast-mannitol Agar medium (YMA)
 1.4.3 Minimal Medium (MM)
 1.4.4 Jensen’s medium
 1.5 Buffers and solutions
 1.5.1 Plant Protein extraction
 1.5.2 Bacterial Protein extraction
 1.5.3 Plasmid DNA extraction
 Pages 26

 Pages
1.6 Electrophoresis gels

2. Methods
2.1 The treatments with herbicides
2.1.1 Microbial treatments
2.1.2 plant microbe interaction
2.2 Plant protein extraction
2.3 Bacterial protein extraction
2.4 Plasmid isolation
2.5 Leghaemoglobin content in root nodules

IV. Results and Discussion
1. Microbial Experiment
1.1 Effects of herbicides on the growth of *Rhizobium leguminosarum* biovar *viciae*
1.2 Effect of herbicides on the survival percentage of *Rhizobium leguminosarum* biovar *viciae*
1.3 Inhibition Zone of herbicides disks
1.4 Plasmid profile as affected by different herbicides
2 Symbiotic experiments
2.1 The number of nodules per plant
2.1.1 Inoculation of treated faba inoculated with *Rhizobium leguminosarum* biovar *viciae*
2.1.2 Inoculation of untreated faba with treated rhizobium
2.2. Leghaemoglobin Percentage
2.2.1 Inoculation of treated faba with *Rhizobium leguminosarum* biovar *viciae*
2.2.2 Inoculation of untreated faba with treated Rhizobium
2.3 SDS-PAGE analysis as a response to the herbicides

2.3.1 SDS PAGE analysis of treated \textit{Vicia faba} inoculated with rhizobium

2.3.2 SDS-PAGE analysis of treated rhizobium

2.4. Performance of plant

2.4.1 Treated faba Inoculated with rhizobium

2.4.2 Untreated faba Inoculated with treated rhizobium

V. Summary

VI. References

VII Arabic summary
List of tables

Table (1): Effects of the herbicide Glyphosate (Roundup) on bacterial growth after incubation periods of 24 and 48 hours 41
Table (2): Effects of the herbicide Basagran on bacterial growth after incubation periods of 24 and 48 hours 43
Table (3): Effects of the herbicide Fusilade on bacterial growth after incubation periods of 24 and 48 hours 45
Table (4): Growth rates and percentages of rhizobium treated with different concentrations of the three herbicides. 47
Table (5): Effect of different concentration of the three herbicides Glyphosate, Basagran and Fusilade, on the colony number of Rhizobium leguminosarum 49
Table (6): Nodule number/plant of three cultivars of Vicia faba treated with the three concentrations of herbicide Basagran 57
Table (7): Nodule number/plant of three cultivars of Vicia faba treated with the three concentrations of herbicide Fusilade 57
Table (8): Nodule number/plant of three cultivars of Vicia faba treated with the three concentrations of herbicide Glyphosate (Roundup) 58
Table (9): Nodule number of three cultivars of 62
Vicia faba inoculated with Rhizobia treated with three concentrations of the herbicides Basagran, Fusilade and Glyphosate

Table (10): Leghaemoglobin contents in the nodules of three cultivars of *Vicia faba* treated with three concentrations of the herbicide Basagran

Table (11): Leghaemoglobin contents in the nodules of three cultivars of *Vicia faba* treated with three concentrations of the herbicide Fusilade

Table (12): Leghaemoglobin contents in the nodules of three cultivars of *Vicia faba* treated with three concentrations of the herbicide Glyphosate (Roundup)

Table (13): Leghaemoglobin contents in the nodules of three cultivars of *Vicia faba* inoculated with three concentrations of the three herbicides treated *Rhizobium leguminosarum* biovar *viciae*

Table (14): Computer analysis of SDS-PAGE pattern of total protein in *Vicia faba* strains Giza 714 and Giza 461 treated with three concentrations (H, R and L) of herbicides Fusilade and Basagran

Table (15): Computer analysis of SDS-PAGE pattern of total protein in *Vicia faba* strain Giza 2 treated with three concentrations (H, R and L) of herbicides Fusilade and Basagran
Table (16) computer analysis of SDS-PAGE pattern of total protein in *Rhizobium leguminosarum* biovar *viciae* strain 481 treated with three concentrations (1, 5 and 10 µl/ml) of herbicides Glyphosate, Basagran and Fusilade
List of figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure (1)</td>
<td>Histogram for the effects of the herbicide Glyphosate (Roundup) on bacterial growth after incubation period of 24 and 48 hours.</td>
<td>42</td>
</tr>
<tr>
<td>Figure (2)</td>
<td>Histogram for the effects of the herbicide Basagran on bacterial growth after incubation periods of 24 and 48 hours</td>
<td>44</td>
</tr>
<tr>
<td>Figure (3)</td>
<td>Histogram for the effects of the herbicide Fusilade on bacterial growth after incubation periods of 24 and 48 hours</td>
<td>45</td>
</tr>
<tr>
<td>Figure (4)</td>
<td>Histogram for the growth rate of Rhizobium treated with different concentrations of the three herbicides</td>
<td>47</td>
</tr>
<tr>
<td>Figure (5)</td>
<td>Histogram for the effects of different concentrations of the three herbicide Glyphosate, Basagran and Fusilade on the colony number (survival %) of Rhizobium leguminosarum</td>
<td>79</td>
</tr>
<tr>
<td>Figure (6)</td>
<td>Zone of inhibition induced by treatment with gradient concentrations of Basagran herbicide (i.e., 100, 75, 50, 25 and 10 µl per disk).</td>
<td>50</td>
</tr>
<tr>
<td>Figure (7)</td>
<td>Zone of inhibition induced by treatment with gradient concentration of Fusilade herbicide (i.e., 100, 75, 50, 25 and 10 µl/disk)</td>
<td>51</td>
</tr>
<tr>
<td>Figure (8)</td>
<td>Zone of inhibition induced by treatment with gradient concentration of Glyphosate herbicide (i.e., 100, 75, 50, 25 and 10 µl/disk)</td>
<td>51</td>
</tr>
<tr>
<td>Figure (9)</td>
<td>Plasmid profile of treated rhizobium with</td>
<td>52</td>
</tr>
</tbody>
</table>
three herbicides at three concentrations and control

Figure (10) Nodule formation of three cultivars of untreated *Vicia faba* (Control).

Figure (11) Nodules formation of three cultivars of *Vicia faba* treated with three herbicides (High dose of each) and inoculated with untreated Rhizobium

Figure (12) Nodule number of three cultivars of *Vicia faba* treated with the three concentrations of herbicide Basagran

Figure (13) Nodule number of three cultivars of *Vicia faba* treated with the three concentration of herbicide Fusilade

Figure (14) Nodule number of three cultivars of *Vicia faba* treated with the three concentration of herbicide Fusilade

Figure (15) Nodules number of three cultivars of *Vicia faba* inoculated with rhizobium treated with the herbicides Basagran, Fusilade and Glyphosate

Figure (16) Nodules formation of three cultivars of *Vicia faba* inoculated by treated rhizobium with three herbicides (High dose of each)

Figure (17) Leghaemoglobin contents in the nodules of three cultivars of *Vicia faba* treated with three concentrations of the herbicide Basagran

Figure (18) Leghaemoglobin contents in the nodules of three cultivars of *Vicia faba* treated with three concentrations of the herbicides Fusilade

Figure (19) Leghaemoglobin contents in the nodules