ENDONASAL ENDOSCOPIC SURGERY OF SKULL BASE LESIONS

Thesis

Submitted for Complete Fulfillment of The M.D. Degree in **Neurosurgery**

By

Ahmed Assem Farid (M.B., B.Ch.; M.Sc., Cairo University)

M.B., B.Ch.; M.Sc., Cairo University

Supervisors

Prof. Dr. Mohamed Lotfy M. Ibrahim

Professor of Neurosurgery, Faculty of Medicine, Cairo University

Prof. Dr. El-Gohary Mohamed El-Gohary

Professor of Neurosurgery, Faculty of Medicine, Cairo University

Prof. Dr. Reda Hussein Kamel

Professor of Otorhinolaryngology Faculty of Medicine, Cairo University

Dr. Khaled Samir Anbar

Assistant Professor of Neurosurgery Faculty of Medicine, Cairo University

FACULTY OF MEDICINE CAIRO UNIVERSITY 2010

(:)

11

II

ACKNOLEDGEMENT

First of all, I am deeply thankful to **Allah** by the grace of whom this work was possible.

It is my pleasure to express my deepest gratitude and sincere thanks to Prof. Dr. Mohamed Lotfy M. Ibrahim, Professor of Neurosurgery, Faculty of Medicine, Cairo University, for his generous concern, sincere supervision, valuable suggestions and cooperation, continuous advice and support saving no effort or time in reading each word in this work. To him I will always be grateful.

I wish also to express my sincere gratitude and thanks to Prof. Dr. El-Gohary Mohamed El-Gohary, Professor of Neurosurgery, Faculty of Medicine, Cairo University, for his kind supervision, sincere encouragement, valuable advices and instructions throughout this work.

I am also highly indebted to Prof. Dr. **Reda Hussein Kamel**, Professor of Otorhinolaryngology, Faculty of Medicine, Cairo University, for his kind support, sincere supervision, advices, guidance and precious participation throughout this work.

I would like to express my appreciation and thanks to Dr. **Khaled Samir Anbar**, Assistant Professor of Neurosurgery, Faculty of Medicine, Cairo University, for his valuable cooperation in patients' referral and cardiological assessment.

Also I would like to thank Prof. Dr. Hazem Abdel Badie, Professor of Neurosurgery, Faculty of Medicine, Cairo University, for his help and support of this work.

I would like to express my gratitude to all the members of Neurosurgery Department for their help and support.

I am especially grateful to my family especially my wife for her endless patience and support throughout this work.

Ahmed Assem Farid

CONTENTS

Page

•	Introduction	1
•	Review of Literature	8
	o Anatomy	9
	• Pathology of Skull Base Tumors	30
	o Imaging of Skull Base Tumors	55
	o Diagnostic Evaluation	85
	• Approach to Sella	92
	• Extended Endoscopic Endonasal Approaches to the Skull Base	e 103
	o Endoneurosurgical Hemostasis	. 142
	 Reconstructive Techniques 	. 151
	• Advantage of the Endoscopically Assisted Bimanual Oper Technique	ating 163
•	Patients and Methods	166
•	Results	171
•	Case Presentation	192
•	Discussion	200
•	Summary	207
•	References	210
•	Arabic Summary	217

LIST OF FIGURES

No.	Title	Page
1	Intracranial targets that can be reached with the endonasal endoscopic cranial base approaches	4
2	Innovations such as the microscope (a) and later the endoscope (b) further contributed to the evolution of the transsphenoidal approach allowing improved illumination, magnification, and visualization	5
3	(A) Anatomy of the nasal septum (B) Skeletal framework of the nasal septum	11
4	Osseus relationships of the sphenoid bone, the sphenoid bone is outlined in each view	14
5	Varieties of sphenoid sinus pneumatization	17
6	Nasal pathway to the sphenoid sinus.	17
7	Endoscopic view of the sphenoid ostium (right nostril)	18
8	(A) Panoramic view inside the sphenoid sinus after enlargement of the natural ostium (B) Closer view of the optocarotid recess	20
9	Endoscopic views obtained in a cadaver, showing basicconcepts for extended approaches	21
10	Endoscopic views obtained in a cadaver, showing the extended approach to the planum sphenoidale	22
11	Endoscopic view obtained in a cadaver, showing the extended approach to the olfactory groove.	23
12	Endoscopic views obtained in a cadaver, showing the extended approach to the clivus (nasal and sphenoidal steps of the procedure)	25
13	Endoscopic views obtained in a cadaver, showing the extended approach to the clivus (intradural step)	26
14	Endoscopic views obtained in a cadaver, showing the extended approach to the craniovertebral junction and anterior portion of the foramen magnum (intradural step)	27
15 16	Panoramic endoscopic view obtained at the end of the dissection.(A) Axial T1-weigheted gadolinium enhanced MRI scan showing cavernous hemangioma (C) Transsphenoidal approach to the cavernous sinus	28 29
17	Squamous carcinoma, keratin, forming tumor nest formation with invasive growth pattern	32
18	Nasopharyngeal carcinoma, undifferentiated type (WHO-III) showing undifferentiated neoplastic cells with cleared nuclei in a prominent lymphoid background	33
19	WHO grade I meningioma with multiple "whorls" (arrows, H & E x200)	34
20	Esthesioneuroblastoma comprised primitive small tumor cells	35
21	Chondrosarcoma comprised of cartilage with increased cellularity of chondrocytes with a haphazard growth pattern	36
22	Chordoma comprised of vacuolated physaliphorous cells in a myxoid background	37
23	Melanin pigmented cells in malignant melanoma of the sinonasal mucosa	38

No.	Title	Page
24	Diffused B-cell lymphoma composed of sheets of pleomorphic cells and necrosis	39
25	Nasopharyngeal angiofibroma with scattered stellate cells in a fibrous stroma with prominent vessels	40
26	Adenoid cystic carcinoma, cribriform type	41
27	Histology of typical pituitary adenoma	27
28	Adamantinomatous craniopharyngioma exhibiting calcification and inflammatory reaction	44
29	Atypical meningioma, WHO grade II. This photomicrograph illustrates cellular sheeting, a feature indicative of increased tumor aggressiveness (H&E x200).	46
30	Carotid body paraganglioma showing nests of clear cells surrounded by thin capillaries. This appearance represents the classical"Zellballen" pattern	54
31	Ethmoid carcinoma. Coronal images showing bony destruction on CT scan and intracranial invasion on T1-MRI with contrast	57
32	Sinonasal Melanoma	58
33	PET-CT of head and neck. The fused PET-CT images show ethmoid carcinoma	59
34	Olfactory groove meningioma in a 53-year-old woman complaining of visual disturbance	61
35	Squamous cell carcinoma of the frontal and ethmoid sinuses in a 66-year- old woman presenting with bloody nasal and oral secretions and subsequent left eye visual changes (A and B)	61
36	T1-weighted brain MRI with contrast demonstrating strongly enhancing irregular bony lesion along the left cavernous sinus that extends into the left temporal fossa. Biopsy confirmed chondrosarcoma	63
37	T1-weighted brain MRI with contrast showing suprasellar homogeneously enhancing lesion consistent with meningioma	63
38	Chordoma (A) T1-weighted post gadolinium axial MR image shows this chordoma to be moderately enhancing (B) T1-weighted coronal image shows destruction of the clivus by a midline tumor	64
39	Axial CT scans showing large pituitary tumours	65
40	Enhanced MRI showing large pituitary tumour extending up to the 3 rd ventricle	66
41	Plain lateral skull X-ray showing thinning of the dorsum sellae and destruction of the pituitary fossa in a patient with a large pituitary tumour	66
42	Pituitary microadenoma on MR imaging	66
43	Juvenile angiofibroma in a 20-year-old man presenting with bilateral nasal congestion but no epistaxis	69
44	Nasopharyngeal carcinoma with massive central skull base destruction in a 55-year-old man presenting with headache and subsequent development of diplopia	70
45	Infiltrating neoplasm of the right temporal bone. The diagnosis ultimately proved to be meningioma	72

No.	Title	Page
46	Left-sided CP angle meningioma with involvement of the jugular foramen	72
	in a 43-year-old woman presenting with tinnitus and progressive left-	
	sided hearing loss	
47	Neurofibromatosis type II in a patient with long-standing disease and	73
40	multiple manifestations.	
48	Massive skull base glomus tumor in a 32-year-old woman with long-	73
	standing occipital region headache and progressive lower cranial	
40	Lateral video fluorescenic view defining the superior and inferior marging	74
49	of the sella turcica	/4
50	Neuronavigation images showing the position of the tip of the endoscope	77
50	(crosshair) during the dissection in the axial (A) sagittal (B) and coronal	//
	(C) planes	
51	BrainLab VectorVision workstation	78
52	Neuronavigation tools	78
53	Intraoperative correlation of endoscopically identified anatomic	79
	landmarks at the tip of the stylet (arrowhead), lateral x-ray anatomy, and	
	neuronavigational data set in transsphenoidal surgery	
54	Anatomic neuronavigation combined with intraoperative MRI in a 14-	84
	year-old girl with a large suprasellar craniopharyngioma	
55	Transsphenoid corridors	93
56	Endoscopic views obtained in a cadaver showing the standard (right	95
57	nostril) approach to the sellar region	06
57	Endoscopic view obtained in a cadaver, snowing the standard approach to the caller region (aphenoid stan of the proceeding)	96
58	Endosconic view obtained in a cadaver, showing the standard approach to	08
38	the sellar region (sphenoid step of the procedure)	90
59	Endosconic views demonstrating the critical segments of intrasellar tumor	100
57	removal	100
60	Contrast-enhanced T1-weighted MR images	105
61	(A) Preoperative postcontrast MR imaging with representative coronal	107
	(upper) and sagittal (lower) views demonstrating a suprasellar	
	meningioma with critical relationships to the parasellar neurovascular	
	structures (B) Postoperative postcontrast sagittal MR image	
	demonstrating complete tumor removal and anatomical preservation of	
	critical neurovascular structures	100
62	(A) Endoscopic view of the planum module once the bone removal has	108
(2)	been completed.	110
63	(A) Endoscopic view following opening of the tuberculum and planum (B) dura mater. The tumer (T) can be seen once the supressillar eistern is	110
	(r) dura mater. The tumor (1) can be seen once the suprasenal distern is opened (B) Endoscopic view demonstrating extracapsular dissection of	
	the tumor to identify the right ICA	
64	(A) Endosconic view showing a small subchiasmatic perforating vessel	111
01	draped over the dome of the tumor (B) Endoscopic view showing that	
	after adequate debulking the tumor capsule	
65	Endoscopic view obtained after tumor resection. The ACoA (Acom) and	112
	the recurrent artery of Huebner (RAH) can be seen above the chiasm (C)	

Title

No.

Page

- 66 (A) Preoperative MR images demonstrating a large olfactory groove 114 meningioma.
- 67 (A) Endoscopic view using a 70° scope showing the key relationships 115 along the left olfactory sulcus. The cribriform plate (CP) is seen medially and the AEA is also seen. This artery can be seen as it emerges from the orbit after the lamina papyracea has been removed (B) The periorbita (PO) can be seen laterally and a hemoclip (HC) is applied just at the level at which the AEA emerges from the periorbita
- 68 Endoscopic view using a 70° scope showing the relationship of the tumor 116 capsule to the second segment of the ACA (A2) as it courses through the interhemispheric fissure (F)
- 69 (A) Preoperative MR images obtained following contrast administration 117 demonstrating recurrent clival chordoma. Note the intradural extension with severe brainstem compression (B) packing used Preoperative cerebral arteriography revealing severe displacement of the BA (C) Postoperative postcontrast MR images demonstrating removal of the tumor with fat packing used for reconstruction
- 70 Endoscopic view obtained following a complete clivecto-my and 118 intradural tumor removal. The right and left vertebral arteries (VA) can be seen forming the VBJ.
- (A) axial MRI scan revealing a large clival lesion that involves the upper, 120 middle, and lower parts of the clivus with significant extension to the left side, significantly compressing the pons. (B) axial MRI scan after surgery (expanded endoscopic endonasal), confirming surgical gross total resection (C) intraoperative view of the basilar trunk after the endoscopic endonasal removal of the central part of the tumor
- (A) 0-degree-lens endoscopic view of the bony anatomy of the posterior
 wall of the sphenoidal sinus: sella (s), clival indentation (c), planum sphenoidale (ps), optic canal (oc), carotico-optic recess or optic strut (os), carotid protuberance (cp), maxillary protuberance (mp), and foramen lacerum (fl) (A and B).
- 73 (A) and (B) 0-degree-lens endoscopic views of the dura mater of the 125 anterior wall of the sella.
- 74 (A) view under a 0-degree-lens endoscope;B-D, views under a 30-degreelens endoscope directed laterally to the left
- 75 (A-C): 30-degree-lens endoscopic views directed laterally to the left. 129 Once the periosteum is removed at the cavernous sinus apex, cranial nerves III, IV, V-1, VI, and the superior orbital fissure (sof) are exposed laterally to the parasellar ICA (A)
- 76 Endoscopic views obtained in a cadaver, showing the extended approach 131 to the craniovertebral junction and anterior portion of the foramen magnum
- 77 Endoscopic views obtained in a cadaver, showing extended approach to 132 the craniovertebral junction and anterior portion of the foramen magnum
- 78 Endoscopic views obtained in a cadaver, showing the extended approach 133 to the craniovertebral junction and anterior portion of the foramen magnum

No.	Title	Page
79	Endoscopic views obtained in a cadaver, showing the extended approach to the craniovertebral junction and anterior portion of the foramen magnum (intradural step)	134
80	Illustration depicting a view of the sella containing a macroadenoma as seen from a right endonasal approach. The sellar bone has been removed and, as is often the case, the contralateral bone removal on the left is somewhat more extensive than on the right, leaving the medial edge of the left cavernous ICA exposed	139
81	Closure in cases with intraoperative CSF leak	140
82	Intraoperative views demonstrating the different types of endonasal bipolar cautery devices	144
83	Photographys showing preparation of the Avitene "sandwich	145
84	Schematic views illustrating the endoneurosurgical hemostasis technique	147
85	(A) Endoscopic endonasal view demonstrating the isolation of the left anterior ethmoidal artery (AE). The vessel can be seen exiting the periorbita (PO) laterally and running into the cribriform plate (CP) medially. The lamina papyracea has been removed, exposing the periorbita, and wide bilateral ethmoidectomies have been undertaken (B) Endoscopic view demonstrating the position of the hemoclip (HC) directly at the point of exit of the anterior ethmoidal artery from the periorbita	150
86	Composite of intraoperative photographs acquired through the endoscope, showing the key steps of the initial reconstructive technique used after an expanded endonasal approach	154
87	Endonasal view obtained during reexploration for a CSF leak that arose after an expanded endonasal approach, demonstrating that the majority of the graft has granulated well	155
88	Endonasal view obtained during reexploration for CSF leakage that occurred as a result of an expanded endonasal approach following an earlier transplanum approach	156
89	(A) Schematic view through the sphenoid sinus (SS) demonstrating the defect (D) in the cranial base. The bone margins (BM) of the defect can be seen in the depths of the sphenoid sinus (B) Schematic drawing demonstrating Step 1 of our current reconstruction technique. Collagen matrix (Duragen; Integra Life Sciences) is being placed subdurally through the dural defect. The margins are redundant to allow for an adequate overlap intradurally beyond the bone margins of the defect	157
90	Schematic view demonstrating the positioning of the extradural onlay graft. Acellular dermis (off-label indication) is used. Note that all of the folds in the graft must be flattened to ensure complete contact, minimizing the risk of persistent channel formation. Defect	158
91	Schematic view demonstrating the placement of the fat graft on top of the epidural onlay graft (OG). This obliterates the sphenoid sinus and provides pressure on the onlay graft beneath	159
02	Cohematic view showing the algorment of filmin alve on ten of the fat	150

92 Schematic view showing the placement of fibrin glue on top of the fat 159 graft to create a coagulum to the level of the anterior face of the sphenoid sinus

No.	Title	Page
93	Schematic view demonstrating the positioning of the balloon stent outside	160
	(anterior) to the sphenoid face. The balloon is used to apply pressure on	
	the grafts within the sphenoid sinus	
94	Schematic view demonstrating the current multilayered reconstruction	161
	technique. Note the redundancy of the subdural inlay graft (shown in red)	
	allowing for contact with the residual dura mater	
95	(A) Photograph showing the right naris with the endoscope and suction at	164
	the 12- and 6-o'clock positions respectively (B). Photograph depicting the	
	binasal approach with the endoscopist passing the scope in the right naris	
96	Adenoma patient sex	176
97	Microadenoma and macroadenoma	177
98	Non-functioning & functioning adenoma	177
99	Functioning nituitary adenoma	177
100	Pituitary adenomas with suprasellar extension	178
101	Pituitary adenomas with cavernous sinus invation	178
102	Non-secreting adenoma and visual deficit	179
102	Non-secreting adenoma & GTR	180
103	Correlation between non secreting adenoma GTR & visual recovery	181
104	GH-secreting adenoma & visual deficit	183
105	GH-secreting adenoma>R	183
107	Correlation between GH-secreting adenoma GTR & visual recovery	183
107	ACTH secreting adenoma GTR and endocrinological cure	183
100	Prolactinoma nationts & GTR	186
109	Prolactinoma patients & endocrinological cure	186
111	Prolactinoma patients and visual deficit	180
117	Correlation between prolacting patients GTR and visual deficit	188
112	Types of complications	180
117	Preoperative societal & coronal MRI with contrast revealed seller &	107
114	suprasellar nituitary adenoma (prolactinoma)	192
115	Postoperative sagittal and coronal MRI with contrast revealed total	102
115	removal of the tumor through endoscopic endopasal approach	172
116	Preoperative coronal and sagittal MRI revealed nituitary macroadenoma	103
117	Postoperative CT brain axial cuts showed total tumor removal	10/
117	Preoperative sagittal and coronal MRI with contrast revealed sellar and	105
110	suprasellar nituitary adenoma	175
110	Postoperative saggital and coronal MRI revealed total removal of the	106
117	tumor	190
120	Dra anarativa sagittal & aaronal MPI with contrast revealed non secreting	107
120	seller & supreseller nituitery adeneme	197
121	Post operative societal & coronal MPI with contrast revealed total	107
121	romoval of the tumor through both endescenic transposal & transposal	19/
	removal of the tunior through both endoscopic transnasar & transcratinal	
100	approaches Dra anarativa MDI brain avial & aaranal avia showing alfactory graces	100
122	rie-operative wiki oralli axial & coronal cuts snowing offactory groove	198
100	Dogt aparative CT brain avial & agranal auta showing subtatal avaiation of	100
123	the tumor through endenesed endescenic entroces	177
	the tumor through endonasal endoscopic approach	

LIST OF TABLES

No.	Title	Page
1	Parts of the middle turbinate	11
2	Tumors of the Sinonasal Tract	31
3	Lesions of the Sella Turcica	42
4	Differential Diagnosis of Clival Tumors	48
5	According to Kelly's paradigm, intraoperative CSF leaks were	101
	categorized based on size	
6	Master table of cases	172
7	Pituitary adenoma patients	176
8	Non-secreting adenoma patients & visual deficit	179
9	Non-secreting adenoma patients gross total removal (GTR) & visual	180
	recovery	
10	GH-secreting adenoma patients & visual defect	181
11	GH-secreting adenoma patients GTR & visual recovery	182
12	ACTH-secreting adenoma patients GTR & endocrinological cure	184
13	Prolactinoma patients total removal & endocrinological cure	185
14	Prolactinoma patients total removal, visual deficit & visual recovery	187
15	Complications of adenoma patients	188
16	Chordoma patients	189
17	Meningioma patients	190

Abstract

The results of this study confirm the value, efficacy, and safety of endoscopic pituitary surgery. The technique can achieve favorable removal and remission rates with very low morbidity. Endoscopic cranial base surgery is a minimal invasive alternative to traditional transsphenoidal, transcranial, or transfacial approaches to the cranial base. The main indication is for centrally located lesions or as an adjunct to craniotomy for more extensive tumors. The technique's minimally invasive nature makes it very attractive for selected patients, as it has the potential to minimize the morbidity associated with other extensive approaches. Long-term control data and prospective analysis of surgical series are required to strengthen these conclusions and to extend the approach to totally remove skull base tumors. The endoscopic endonasal transsphenoidal approach for skull base tumors is a minimally invasive surgery preserving the nasal structures thus facilitating faster postoperative recovery. It offers a panoramic view of the sphenoid sinus with visualization of the corners of the sellar and suprasellar structures with increased illumination and magnifications. Such visualization provides a potential for more complete tumor removal with preservation of pituitary function and very low rate of complication. Finally we still need time to increase our skills and experience to master this approach and to improve our results regarding total excision of skull base tumors other than pituitary adenoma. We feel that the advantages of the endoscopic approach will make this technique the favored approach for future treatment of skull base tumors.

Keywords:

Endonasal Endoscopic surgery Skull base lesions

INTRODUCTION

INTRODUCTION

The cranial base constitutes an anatomic boundary between the fields of neurosurgery and otolaryngology. Surgery in this region has always been a challenge for both disciplines. As a result of productive collaborations between practitioners in the fields of otolaryngology and neurosurgery, a variety of transcranial and transfacial cranial base approaches have been developed to reach pathology in almost any location. However, these open approaches have a complication rate of 18 to 60%; they often involve significant amounts of brain retraction, neurovascular manipulation, and cosmetic compromise; and they frequently rely on complex plastic surgery closures. In response, another collaboration between neurosurgeons and otolaryngologists has recently resulted in the development of the new field of endoscopic endonasal cranial base surgery. These minimally invasive approaches access the midline cranial base using the natural apertures in the face, namely the nostrils. Visualization is provided with rigid straight and angled endoscopes that can illuminate areas of the cranial base that were previously unreachable with standard microscope-based transsphenoidal or transoral approaches. Because the lens sits at the tip of the endoscope and travels to the pathology, magnification is unnecessary and the panoramic 360-degree view facilitates visualization, even around corners. Rather than calling these approaches minimally invasive, it may be more accurate to say minimal access, because the ultimate goal is to perform a resection as aggressively as with an open approach (Paolo Cappapianca et al., 2008).

In recent years, several pioneering groups have published cadaveric studies, small case series, case reports, and conceptual articles illustrating the potential for a purely endonasal endoscopic approach to remove an assortment of pathological lesions in a range locations throughout the midline cranial base (Schwartz *et al.*, 2008).

Transsphenoidal approaches to the ventral midline skull base were first proposed more than a century ago. Initially these approaches were restricted to the pituitary fossa, but with progressive evolution in biotechnology, coupled with increased anatomical understanding, the transsphenoidal approaches were extended to regions beyond the sella turcica to include other entities in addition to pituitary tumors. The introduction of the operating microscope by Hardy in the 1960s, coupled with Dott's contribution of fluoroscopy, provided the first critical navigation/visualization integration that formed the foundation of the work that followed (**Amin Kassam** *et al.*, **2005**). The addition of the endoscope, coupled with the current sophisticated neuronavigation systems, builds on this foundation. The expanded endonasal approach evolved when these principles were then further augmented with the concept of team surgery; that is, a neurosurgeon and otolaryngologist working simultaneously throughout all phases of the surgery (approach, resection, and reconstruction). Using the principles of the expanded endonasal approach, we are now able to access the entire ventral skull base, from the crista galli up to and through the odontoid, and we are able to address a diverse array of intra- and extradural entities (**Fig. 1**) (**Amin Kassam** *et al.*, **2005**).

The first principle in both understanding and successfully achieving the desired results using the endoscopic endonasal approaches is that the surgery is best performed as collaborative surgery between otolaryngology and neurosurgery, preferably by an otolaryngologist with experience performing functional endoscopic sinus surgery and a neurosurgeon with experience performing transsphenoidal pituitary and transcranial cranial base surgery. Both surgeons should be involved in all aspects of the case, including operative planning as well as the approach, resection, and closure. Our categorization of the endoscopic cranial base approaches derives precisely from this collaboration. Although the nasal corridors are most familiar to the otolaryngologist, the targets are most familiar to the neurosurgeon. The approaches derive from the union of these two In addition, the surgical technique itself and the perspectives. understanding of how straight and angled endoscopes can be applied to improve visualization arise from the meeting of these two unique perspectives, which evolves over time during the course of the collaboration. The second principle for successful endoscopic cranial base surgery-and critical in deriving adequate approaches and exposure-is the role of stereotactic navigation, which we use in all cases. One now has the option of using either rigid fixation or a cranial pin to fix the reference frame as well as electromagnetic or infrared tracking systems. Although fluoroscopy has been the primary method of navigation during transsphenoidal surgery, the ease and accuracy of modern frameless stereotactic systems has made implementation of more extensive endoscopic approaches safe and feasible. Although the corridor(s), approach(s), and target(s) are chosen before each procedure, as the operation progresses, we often use intraoperative stereotactic navigation to modify, improve, update, and streamline our approach (Schwartz et al., 2008).