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Abstract

The main objective of this study is to assess the first stage in time series analysis which is the
model identification from the Bayesian point of view. Two analytical Bayesian identification
techniques are considered, the direct and the indirect techniques, using two approximations for
the error term, the Newbold and the Broemeling-Shaarawy approximations. The two proposed
techniques are developed using each approximation and evaluated for some moving average
(MA) models. The behaviour of the Bayesian techniques is checked and compared via a
comprehensive simulation study. The simulation study shows that the two techniques are
efficient in identifying the moving average (MA) models. The direct technique dominates the
indirect one. The Newbold approximation helps each technique to perform slightly better than
the Broemeling and Shaarawy approximation.
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Abstract

Identification plays an important role in the time series analysis since it’s the first step in
the time series analysis and the accuracy of all the preceeding steps depends on it. Identifying a
moving average model means determining the order of the model. This step is a very difficult

one since there is no optimal method that is widely accepted in the literature.

The moving average models (MA) are nonlinear in their coefficients. Thus, the errors
sum of squares is not quadratic in the coefficients. A problem causing the likelihood function to
be analytically intractable and lead to nonstandard posterior distributions. Several assertions

tried to treat this problem numerically and analytically.

The current thesis aims to handle the model identification step for the moving average
models from the Bayesian point of view. Two Bayesian analytical identification techniques are
considered, namely the direct and the indirect techniques. Diaz and Farah (1981) introduced the
direct technique for autoregressive (AR) models. In this technique the order of the model is
considered a random variable with known maximum and its posterior mass function is derived.
After that, the posterior probabilities are computed to choose the order with the maximum
probability as a point estimate for the order of the model. The indirect technique, proposed by
Broemeling and Shaarawy (1987), considers the orders of the autoregressive moving average
(ARMA) models as unknown constants with known maximums. Therefore, this technique
derives the posterior distribution for the coefficients instead of the orders using some analytical
approximation for the error, which lead to standard posterior density. After that, the significance
of each coefficient is tested. This technique determines the order of the model by keeping only

the significant coefficients and removing the insignificant ones.

Among various well known approximations in the literature, this study highlights two
approximations. These approximations were proposed by Newbold (1973), and Broemeling and
Shaarawy (1988). Using such approximations, the problems concerning the posterior densities
of time series models are considered. The first approximation by Newbold (N) expands the

errors as linear functions in the coefficients around their nonlinear least squares estimators



NLSE’s using Taylor’s expansion, whereas, the second approximation by Broemeling and
Shaarawy (B-S), approximates the errors as linear functions in the coefficients using their

nonlinear least squares estimates NLSE’s.

The identification of moving average models (MA) is studied via the direct and the
indirect Bayesian identification techniques. The two proposed approximations are used to
simplify the likelihood function of the model. The relationships between the approximate

posterior densities based on the two approximations are investigated.

Comprehensive simulation studies are established to check the goodness of the two
identification techniques based on the considered approximations. The simulation results show
that the direct technique using Newbold approximation was the best to identify the order of the
MA models. Moreover, the efficiency of the identification technique is affected by the

approximation used in its derivations.

It is worth mentioning that this study is the first trial to study the effect of the

approximation on the goodness of the identification technique for the MA models.
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