SAFETY FEATURES IN ANESTHESIA MACHINE

AN ESSAY

SUBMITTED FOR FULFILMENT OF MASTER DEGREE IN ANESTHESIA

By

TAMER EID HASAN IBRAHIM

M.B.B.CH. CAIRO UNIVERSITY.2003

SUPERVISORS

Prof. Dr. NEEMAT IBRAHIM ABD EL RAHMAN PROFESSOR OF ANESTHESIA CAIRO UNIVERSITY

Dr. NIVAN ABBAS EL MEKKAWY

ASSISTANT PROFESSOR OF ANESTHESIA CAIRO UNIVERSITY

Dr. ABEER AHMAD MOHAMED SAID LECTURER OF ANESTHESIA CAIRO UNIVERSITY

FACULTY OF MEDICINE - CAIRO UNIVERSITY

2009 - 2010

<u>ABSTRACT</u>

One of the key features of the patient safety is the belief that safety can be improved by learning from incidents and near misses, rather than pretending they have not happened. A thorough understanding of the parts of anaesthesia machine is essential to the safe practice of anaesthesia. Malpractice claims associated with gas delivery equipment are infrequent but severe and continue to occur.

KEYWORDS:

- Anaesthesia machine design.
- Problems with anaesthesia machine.
- Safety features of anaesthesia machine.
- Checklist of anaesthesia

<u>ACKNOWLEDGEMENT</u>

First and foremost, this work owes its existence to *God*, the kind and the most merciful.

I gratefully acknowledge the sincere advice and guidance of **prof** *Dr*. *Neemat Ibrahim* professor of Anesthesia, Faculty of Medicine, Cairo University, for her kind supervision, professional suggestion, per suit for perfection and meticulous revision of every possible detail. I was fortunate to carry out this work under her supervision.

I am greatly honoured to express my sincere appreciation to *prof Dr Nivan Abbas assistant* professor of Anesthesia, Faculty of Medicine, Cairo University, for his unlimited support, constructive direction and indispensable guidance.

My acknowledgment will not be completed without expressing my respectful thanks and gratitude to *Dr Abeer Ahmad*, Lecturer of Anesthesia, Faculty of Medicine, Cairo University, for her continuous & informative help and kind & supportive guidance.

I am gratefully thank *Dr Nifessa Amr*, Consultant of anesthesia in Hearing and Speech Institute, for her great help and informative guidance during this essay.

Last but not least, I owe a particular dept gratitude to my beloved family who taught me how to walk in path of knowledge with steady steps, to whom I dedicate this work.

Contents

	page
• <u>Abstract</u>	Ι
• <u>Acknowledgement</u>	II
• <u>Contents</u>	111
• List of tables	IV
• List of figures	V
• List of abbreviation	VIII
• Introduction & aim of work	1
• <u>Review of literature:</u>	
o Basic structure of anaesthesia machine.	5
• Problems with anaesthesia machine.	63
• Safety features of anaesthesia machine.	103
• Checkout of anaesthesia machine.	151
• <u>English summery</u>	175
• <u>References</u>	179
• Arabic summery	

List of tables:

		page
<u> Table (1-1)</u>	medical gas cylinder in UK	20
Table (1-2)	medical gas cylinder sizes and capacities	21
<u> Table (1-3)</u>	Breathing systems	42
Table (1-4)	Mapleson system	44
<u> Table (1-5)</u>	NIOSH Recommendations for Trace Gas Levels	61
<u> Table (3-1)</u>	Color coding system.	104

<u>List of figures</u>

		page
<u>Figure(1-1)</u>	Diagram of a generic two-gas anesthesia machine.	10
<i>Figure(1-2)</i>	Simplified internal schematic of an anesthesia machine.	13
<u>Figure(1-3)</u>	Oxygen cylinder manifold.	16
Figure(1-4)	Outlets and connections in the point of use.	18
Figure(1-5)	(a) Pin index safety system of nitrous and (b) Pin index	19
	safety system of oxygen.	
<u>Figure(1-6)</u>	Cylinder inlet regulator.	23
<u>Figure(1-7)</u>	Oxygen flow meter assembly.	24
<i>Figure</i> (1-8)	Variable bypass- vaporizer.	30
Figure(1-9)	Effect of Temperature on saturated vapour pressure.	31
Figure (1-10)	Schematic of the Datex-ohmeda Tec 6 electronic	35
	vaporizers.	
<i>Figure</i> (1-11)	Aladin cassette vaporizer.	37
<i>Figure</i> (1-12)	Schematic diagram of Aladin cassette vaporizer.	37
<i>Figure</i> (1-13)	Circle system.	46
<i>Figure</i> (1-14)	Valve disc.	47
<i>Figure</i> (1-15)	APL valve.	48
<i>Figure(1-16)</i>	Reservoir bags.	48
<u>Figure(1-17)</u>	Tubing system	49
<u>Figure(1-18)</u>	The absorbent canister arrangement.	50
<u>Figure(1-19)</u>	Functioning of the bellows-in-box ventilator.	55
$\frac{Figure(1-20)}{Eigure(1-21)}$	Heat and moisture exchanger (HME)	59 62
<u>Figure(1-21)</u>	pressure limiting valve	02
Figure(2-1)	A dangerous practice with flowmeters.	67
<i>Figure</i> (2-2)	The stop at the top of the flowmeter tube has broken off and	68
	fallen onto the indicator.	
<u>Figure(2-3)</u>	Failure to remove the dust protection cap from a cylinder	71
<u>Figure(2-4)</u>	A sure sign that a cylinder is not correctly fitted in its yoke	71
<i>Figure</i> (2-5)	When the block on the filling block is not in place	73
<u>Figure(2-6)</u>	Parts of the breathing system may have holes in them when	76
	they are received from the manufacturer.	
<u>Figure(2-7)</u>	Prepacked absorbent container.	81
<i>Figure</i> (2-8)	Kinking of a breathing tube.	82
<u>Figure(2-9)</u>	Twisting has caused this bag to become obstructed.	83
<u>Figure(2-10)</u>	Contact with a heated humidifier can cause a breathing tube	85
	to melt and become obstructed.	
<u>Figure(2-11)</u>	Damaged unidirectional valve leaflet.	87

<u>Figure(2-12)</u>	Possible problems with the inner tube of the Bain system.	88
<u>Figure(2-13)</u>	Increased dead space between the breathing system and the	90
	patient.	
<u>Figure(2-14)</u>	(a) The oxygen tubing is attached to the mask. (b) The	95
	adapter has become detached from the mask and is attached	
	to the tracheal tube connector.	
<i>Figure(2-15)</i>	(a) PEEP valve with 0 PEEP. (b) Same valve with PEEP.	96
	Note the similarity in appearance.	
<i>Figure</i> (3-1)	Pipeline inlets.	105
<i>Figure</i> (3-2)	Placing cylinders in yoke.	107
<u>Figure(3-3)</u>	PISS interlink between gas cylinder and anesthesia	107
	machine.	
<i>Figure(3-4)</i>	Pressure sensor shut-off valve The valve is open in (a) and	110
	the valve is closed in (b).	
<i>Figure</i> (3-5)	An oxygen failure protection device.	111
<i>Figure</i> (3-6)	Schematic Oxygen flush valve	113
Figure(3-7)	Oxygen flush valve.	113
Figure(3-8)	Flow control valves.	114
Figure(3-9)	The flow meter sequence is a potential cause of hypoxia	116
Figure(3-10)	Mechanically linked flow control valves.	117
<i>Figure</i> (3-11)	North American Dräger Oxygen Ratio Monitor Controller	118
<i>Figure</i> (3-12)	Select-a-tec mounting system	119
<i>Figure</i> (3-13)	North American Drager interlock system.	120
<u>Figure3-14)</u>	Bottle inserted into the filler block.	121
<i>Figure</i> (3-15)	Key filling specific device.	121
<i>Figure</i> (3-16)	APL valve with spring-loaded disc.	123
<u>Figure(3-17)</u>	Another type of APL valve.	124
<i>Figure</i> (3-18)	Diaphragm-activated pressure gauge.	125
<u>Figure(3-19)</u>	Virtual pressure gauge on anesthesia machine display.	126
<u>Figure(3-20)</u>	Paramagnetic oxygen analyzer.	127
<u>Figure(3-21)</u>	The life of a galvanic (fuel cell) electrochemical oxygen	129
	analyzer can be prolonged by leaving it exposed to room air	
	when not in use.	
<u>Figure(3-22)</u>	Galvanic cell sensor.	129
$\frac{Figure(3-23)}{Figure(3-24)}$	Polarographic sensor. The display on the anasthesis machine provides a reminder	130
<u>Figure(3-24)</u>	that the owngen analyzer needs to be calibrated	150
Figure (2 25)	spiromed in place in breathing system	120
$\frac{1^{\prime} igure(3-23)}{E_{1}^{\prime} auro(2-24)}$	Normal carbon diovide waysform	132
<u><i>r</i> igure(3-20)</u>	Normal carbon dioxide waveform.	133
<u><i>r</i> igure(3-27)</u>	Low end-tidal CO_2 with a good alveolar plateau.	130
<u>r igure(3-28)</u>	Elevated end-tidal CO_2 with good alveolar plateau.	136

<u>Figure(3-29)</u>	Curare cleft or notch.	136
<u>Figure(3-30)</u>	Spontaneous respiratory efforts during mechanical	137
	ventilation.	
<i>Figure</i> (3-31)	Cardiogenic oscillations on capnogram.	138
<i>Figure</i> (3-32)	Prolonged expiratory upstroke.	139
<i>Figure</i> (3-33)	The baseline of capnogram is elevated.	139
<i>Figure</i> (3-34)	Return to spontaneous ventilation.	140
<i>Figure</i> (3-35)	Incompetent inspiratory unidirectional valve.	140
<i>Figure</i> (3-36)	Irregular plateau and/or baseline.	141
<i>Figure</i> (3-37)	A leak in the sampling line during PPV	141
<i>Figure</i> (3-38)	A biphasic expiratory plateaus.	142
<u>Figure(3-39)</u>	Too low a sampling rate with a sidestream capnometer.	142
<i>Figure</i> (3-40)	Contamination of expired sample by fresh gas.	143
<i>Figure</i> (3-41)	A sudden drop of end-tidal CO_2 to zero.	143
<i>Figure</i> (3-42)	A sudden drop of end-tidal CO_2 to a low.	144
<i>Figure</i> (3-43)	Exponential decrease in end-tidal CO ₂ .	144
<i>Figure(3-44)</i>	Small air embolus with resolution.	144
<i>Figure</i> (3-45)	Sudden increase in end-tidal CO ₂ that gradually returns to	145
	normal.	
<i>Figure</i> (3-46)	Drager piston ventilator.	148
<u>Figure(4-1)</u>	Negative pressure test	171
<i>Figure(4-2)</i>	Checks for incompetent unidirectional valves.	172
<u>Figure(4-3)</u>	Valve tester	173

List of abbreviation

FDA	US Food and Drug Administration.
ANSI	American National Standards Institute.
ASTM	American Society for Testing and Materials.
psig	Pounds per square inch gauge.
DISS	Diameter Index Safety System.
PISS	Pin Index Safety System.
UK	United kingdom.
in	Inch.
ADU	Anaesthesia delivery unit.
Tec	Temperature compensated.
CPU	Central processing unit.
Т	Transport.
FGF	Fresh gas flow.
VE	Minute ventilation.
VT	Tidal volume.
APL	Adjustable pressure limiting valve.
I:E	Inspiratory: Expiratory.
HME	Heat and moisture exchanger.
NIOSH	National Institute for Occupational Safety and Health.
ASA	American Society of Anaesthesiologists.
TWA	Time-weighted average.
ppm	Parts per million.
PEEP	Positive end-expiratory pressure.
MAC	Minimum alveolar concentration
OR	Operating Room.
PACU	Post anaesthesia care unit.
ICU	Intensive care unit.
VIII	

kPa	Kilo pascal.
OFPD	Oxygen failure protection device.
VPO	Volume, Pressure, Oxygen.
PAC	Preanesthesia checkout.
ASATT	American Society of Anesthesia Technicians and Technologists.
AC	Alternating current.
AANA	American Association of Nurse Anaesthetists.
APSF	Anesthesia Patient Safety Foundation.
JCAHO	Joint Commission on Accreditation of Healthcare Organizations.

Rationale and background

One of the key features of the patient safety is the belief that safety can be improved by learning from incidents and near misses, rather than pretending they have not happened.

Anaesthetists have always taken a particular interest in the apparatus they use. Their original anaesthetic machines of the 1840s were not purposebuilt devices but merely adaptations of other scientific or domestic apparatus. They were soon replaced by specific simple apparatus which could be widely used in all the known surgery of that era. This second generation of equipment could still be used today but has instead been replaced many times over the last 150 years by apparatus of increasing sophistication. Up until recently the evolution of the anaesthetic machine had mirrored the evolution of the speciality itself, this is because the majority of apparatus was built by the anaesthetist or at his request. (1)

Modern anaesthetic machines are rarely designed by the profession directly and no longer provide such insights into practice. There is now a much blander uniformity in this machinery which has become so sophisticated in an attempt to minimise faults and errors. Anaesthetic audit studies continue to highlight human error or ignorance as the major cause of morbidity and mortality and there is a danger that our machines are evolving in the wrong direction in the hands of industry rather than in our own. (1) Pharmacological muscle paralysis necessitates the use of artificial ventilation, making the patient dependent on the anaesthetist and his equipment for the fundamental functions of oxygenation and excretion of carbon dioxide. Equipment failures during anaesthesia probably could have led (if not discovered or corrected in time) or did lead to an undesirable outcome. The majority of critical incidents are caused by human errors, which often comprise failure to use the equipment properly, failure to use available monitors and alarms, and failure to develop appropriate algorithms in response to the alarms and monitors. (2)

Aside from the obvious human errors involving misuse of or unfamiliarity with the equipment, when the rare equipment failure does occur, the defect appears to be almost always due to lack of or incorrect service and maintenance. These issues became the focus of anaesthesia practice management efforts because confusion or even dispute about who precisely is responsible for maintaining the anaesthesia equipment often arise the facility itself or the practitioners. (3)

No matter how rote the task or how vigilant the anaesthesiologist, "slips" and other errors represent expected aspects of human performance. Evaluation and subsequent improvement of standard checkout procedures promises to increase patient safety in the peri-operative period by removing more of the "human factors" so often implicated in anaesthesia adverse events. The use of pre-flight checklists has been considered a key method in improving airline safety, largely due to regular systematization of complex procedures, and improvement of team dynamics through authority-neutral tasks. (4) A checklist system has been proposed as part of routine preanaesthesia care, with the American Society of Anaesthesiologists and the US Food and Drug Administration (FDA) issuing general guidelines supporting checklists in 1986.Subsequently, anaesthesia professional societies in Great Britain and Europe adopted similar standards. (4)

Aim of the work

The anaesthesia machine is that component of the anaesthesia delivery system that receives medical gases (oxygen, nitrous oxide, air, heliox) under pressure and controls the flow of each gas individually. It creates a gas mixture of known composition at a known flow rate and delivers it to the common gas outlet of the machine. From here, the fresh gas flow is conducted to the anaesthesia circle breathing system. <u>This review will discuss:</u>

- The storage of compressed oxygen and nitrous oxide and how these gases arrive to a generic anaesthesia machine.
- The paths taken by these gases as they flow through the generic machine will be described.

- The important components used to create the precisely controlled fresh gas mixture.
- > The **safety** features of the **machine** as regard:
 - Prevention of delivery of hypoxic mixture.
 - Prevention and early detect disconnection.
 - Prevention of the increase of intra-thoracic pressure.
 - Prevention of over-dosage.

CHAPTER 1