EXPRESSION OF TRANSFORMING GROWTH FACTOR β_1 IN INDUCED SPUTUM OF ASTHMATIC CHILDREN

Thesis Submitted for Partial Fulfillment of Master Degree in Pediatric

Presented by Soha Mansour Al Saeed *M.B.B.Ch.*

Supervised by

Prof. Dr. Fatma Mohamed Mokhtar El-Heneidy

Professor pediatrics Faculty of Medicine –Cairo University

Prof. Dr. Manal Wagdy El Masry

Professor of clinical pathology Faculty of Medicine – Cairo University

Dr. Ashraf Mohamed Sherif

Lecturer of Pediatric Faculty of Medicine –Cairo University

> Faculty of Medicine Cairo University 2010

Acknowledgment

My deepest gratitude an thanks to God, the most merciful for guiding me through, and giving me the strength to complete this work.

I would like to express my deepest and profound respects for my Professor Dr. Fatma Mohamed Mokhtar El-Heneidy for her kind and sincere support. It has been an honor and a pleasure to work under her supervision.

I would like to express my deepest thanks and gratitude to Prof. Dr. Manal Wagady El Masny for her invaluable help in the practical part of the study. I will always be grateful to her, for her kind help and support.

I would also like to express my deepest thanks and aapreciation to Dr. Ashraf Mohamed Sherif. His help and support throughout this study have been invaluable.

Words are not sufficient to express my gratitude to my family, they are my strength and they have truly shared in this work.

Last, but never least, I thank my patients and their parents for their cooperation and their trust. I wish them all the best of health and happiness.

Soha Mansour

ABSTRACT

This study suggests that transforming growth factor- β_1 may play a role in regulation of disease activity and the level of TGF- β_1 in induced sputum may be a marker of asthma control this is a prospective randomized clinico-laboratory study which was conducted on 40 asthmatic children and 40 age and sex matched normal children as a control group.

KEY WORDES

Expression

Growth

Children

LIST OF ABBREVIATION

AEC	:	Absolute eosinophile count.
AHR	:	Airway hyperresponsiveness.
BAL	:	Broncho alveolar lavage.
BMP	:	Bone morphogenetic.
COPD	:	Chronic obstructive pulmonary disease.
CPLA2-a	:	Cytosolic phosphlipase A ₂ alpha.
CTGF	:	Connective tissue growth factor.
DALYS	:	Disability – adjusted life years.
ECM	:	Extra cellular matrix.
EGF	:	Epidermal growth factor.
ELISA	:	Enzyme – linked immuno sorbent assay.
ERK	:	Extra cellular regulated protein kinase
FEV_1	:	Forced expiratory volume in 1 second.
FVC	:	Forced vital capacity.
GM-CSF	:	Granulocyte macrophage-colony stimulating factor.
HDM	:	House dust mite.
HPA	:	Hypothalamic-pituitary Adrenal.
ICS	:	Inhaled corticosteroid.
IFN-α	:	Interferon-a
MDC	:	Macrophage – derived chemokines.
MDI	:	Metered-dose inhaler.
MHC	:	Major histocompatibility complex.
MMP	:	Matrix metalloproteinase.
MUC	:	Mucin glycoproteins.
NO	:	Nitric oxide.
O.D	:	Optical density.
PAI	:	Plasminogen activator inhibitor.
PEF	:	Peak expiratory flow.

LIST OF ABBREVIATION (cont...)

PPAR	:	Peroxisome proliferators activated receptor.
RSV	:	Respiratory syncytial virus.
SD	:	Standard deviation.
SMA	:	Smooth muscle actin,
STRAP	:	Serine-threonine kinase receptor-associated protein.
TARC	:	Thymus activation regulated chemokines
TGF - β_1	:	Transforming growth factor- β_1
Th_1	:	T helper 1
Th_2	:	T helper 2
TIMP	:	Tissue inhibitors of matrix metallopoteinas.
VNTR	:	Variable number of tandem repeats.

LIST OF FIGURES

Fig No.	Title	Page No.
Figure (1): I	nflammatory cells in asthmatic airways	24 -
Figure (2): 1	The role of lymphocyte of mechanism of asthma	26 -
Figure (3): F	Key mediators of asthma	28 -
-	Pathophysiology of airways narrowing in thma	30 -
Figure (5): A	anatomy of an asthma attack	- 32 -
-	The role of TGF-β1 in induction of airway modeling	37 -
Figure (7): N	leasuring PEF variability	49 -
Figure (8): N	leasuring Airway Responsiveness	51 -
-	Management of asthma exacerbation in acute re setting	88 -
ine tra	Studies have revealed that there is an creased expression and release of ansforming growth factor beta in asthmatic rways.	97 -
ac	Scheme showing steps involved in forming the tivated transforming growth factor (TGF)-β ceptor complex.	99 -
via kii	Transforming growth factor (TGF-β) can signal a Smads or a mitogen-activated protein MAP nase-like pathway, resulting in transcription of rget genes.	- 102 -

LIST OF FIGURES (Cont...)

Fig No.	Title	Page No.
Figure	(14): Although the established dogma describes fibroblasts transforming into myofibroblasts under the influence of transforming growth factor (TGF)- β , there are reports of other precursor cells and a number of other inducers of the myofibroblast phenotype.	- 107 -
Figure	(15): Master Scope-PC spirometer	131
Figure	(16): The integrated program	133
Figure	(17): Sex distribution among asthmatic child	143
Figure	(18): Sex distribution among control group	144
Figure	(19): Frequency of age distribution (years) among asthmatic patients	145
Figure	(20): Frequency of age distribution (years) among controls	145
Figure	(21): Comparative data of pulmonary function parameters in asthmatic patients and control group	149
Figure	(22): Comparison between control and asthmatic patients subgroups as regards mean values of FVC	151
0	(23): Comparison between control and asthmatic patients subgroups as regard mean values of FEV ₁	153
Figure	(24): Comparison between control and asthmatic patients subgroups as regards mean values of FEV ₁ /FVC	155

LIST OF FIGURES (Cont...)

Fig No.	Title	Page No.
Figure	(25): Comparison between control and asthmatic patients subgroups as regard mean values of PEF	157
Figure	(26): Levels of TGF- β_1 in induced sputum of asthmatic patients and controls (solid lines represent the mean values).	159
Figure	(27): Comparison between controls and asthmatic patients as regard mean values of sputum eosinophils	160
Figure	(28): TGF-β ₁ level in induced sputum of asthmatic subgroups compared to normal controls	162
Figure	(29): Comparison between control and asthmatic patients subgroups as regard mean values of sputum eosinophils	164
Figure	(30): Levels of IgE in asthmatic patients and controls	166 -
Figure	(31): Comparison between asthmatic patients and controls as regard mean value of absolute eosinhophilic count	167 -
Figure	(32): IgE levels in asthmatic subgroups compared to control group.	169 -
Figure	(33): Comparison between controls and asthmatic patients subgroups as regard mean values of absolute eosinophilic count.	171 -
Figure	(34): Correlation between TGF-β ₁ and age among asthmatic patients	173 -
Figure	(35):Correlation between TGF-β ₁ and IgE among asthmatic patients	174 -

LIST OF FIGURES (Cont...)

Fig No.	Title	Page No.
Figure	(36): Correlation between TGF-β ₁ and FVC among asthmatic patients.	- 175 -
Figure	(37): Correlation between TGF-β ₁ and FEV ₁ among asthmatic patients	- 176 -
Figure	(38): Correlation between TGF-β ₁ and FEV ₁ /FVC among asthmatic patients	- 177 -
Figure	(39): Correlation between TGF-β ₁ and PEF among asthmatic patients	- 178 -
Figure	(40): Correlation between TGF-β ₁ and sputum eosinophils among asthmatic patients	- 179 -
Figure	e (41): Correlation between TGF and AEC among asthmatic patients	- 180 -

LIST OF TABLES

Table.	No.	Title	Page No.
Table	(1):	Factors Influencing the Development and Expression of Asthma	7 -
Table	(2):	Classification of Asthma Severity by Clinical Features Before Treatment	60 -
Table	(3): L	evels of Asthma Control	61 -
Table	(4):	Choosing an Inhaler Device for Children with Asthma*	63 -
Table	(5): N	lovel asthma treatments	76 -
Table	(7): R	leagents Provided	138
Table	(8): S	Sex distribution among asthmatic children and control group	143
Table	(9):	Comparative statistical values of age, weight and height of asthmatic patients and control	144
Table	(10):	Steroid treatment among asthmatic patients	146
Table	(11):	Asthmatic patients subgroups	146
Table	(12):	Sex distribution among asthmatic patients subgroup	146
Table	(13):	Steroid treatment between different asthmatic patients subgroups.	147
Table	(14):	Comparison between asthmatic patients and controls as regards pulmonary function test (PFTs).	148
Table	(15):	Statistical comparative data of FVC (% of predicted) between asthmatic subgroups and controls.	150

LIST OF TABLES (Cont...)

Table.	No.	Title	Page No.
Table	(16):	Statistical comparative data of FEV_1 (% of predicted) between asthmatic subgroups and controls.	152
Table	(17):	Statistical comparative data of FVC ₁ /FVC between asthmatic subgroups and controls	154
Table	(18):	Statistical comparative data of PEF between asthmatic subgroups and controls	156
Table	(19):	Statistical comparison between asthmatic patients and controls as regard sputum TGF= β_1 and sputum Eosinophils	158
Table	(20): S	Statistical comparative data of sputum TGF-β1 between asthmatic subgroups and controls	161
Table	(21):	Statistical comparative data of sputum eosinophils between asthmatic subgroups and controls.	
Table	(22):	Statistical comparison between asthmatic patients and controls as regard IgE and absolute eosinophilc count	
Table	(23): S	Statistical comparative data of total serum IgE between asthmatic subgroups and controls	168 -
Table	(24):	Statistical comparative data of absolute esinophilic count between asthmatic subgroups and controls	170 -
Table	(25): (Correlation study between sputum TGF- β_1 and all other parameters in the studied asthmatic patients.	172 -

LIST OF CONTENTS

Title	Page No.
Introduction	1
Aim of the Work	3
Review of Literature	4
Bronchial asthma	4
Transforming growth factor beta (TGF-β1)	
Patients and Methods	121
Results	143
Appendix	
Discussion	
Conclusion	
Recommendations	
Summary	
References	
Arabic Summary	

INTRODUCTION

Bronchial asthma is one of the commonest diseases in children and its prevalence is increasing in developing world. Affecting around 10% of the world's population (Shahana et al., 2005).

Asthma is characterized by chronic lung inflammation and airway remodeling *(Wark et al., 2005)*, as shown by subepithelial fibrosis, myofibroblast hyperplasia, myocyte hyperplasia and hypertrophy together with epithelial damage, goblet cell metaplasia, oedema and increased vascularity *(Woodruff et al., 2004)*.

Transforming growth factor- β_1 (TGF- β_1) is a potent profibrogenic factor whose expression is increased in the asthmatic airways and is prime candidate for the initiation and persistence of airway remodeling in asthma *(Fedorov and Wilson et al., 2004)*. TGF- β_1 is released from damaged epithelial cells and can mediate its effects by interacting with TGF- β_1 receptors on fibroblast which promote the transformation of fibroblasts into myofibroblasts resulting in remodeling of the airway *(Huang et al., 2004)*.

Several reports have demonstrated that eosinophils in the airway mucosa represent a major source of TGF- β_1 (Minshall et al., 1997). Furthermore, expression of TGF- β_1 is evident in

circulating esoinophils from hypereosinophilic individuals *(Wong et al., 1991).* Since bronchial asthma is associated with eosinophilic infiltration and activation in the airways, the expression of TGF- β_1 by these cells may results in fibroblast activation and collagen deposition seen in this disease. It has been shown that bronchial biopsy tissues from severe asthmatics over expressed TGF- β_1 mRNA more than normal subject and the main source of the mRNA was eosinophils *(Ohno et al., 1996).* In addition, TGF- β_1 I levels in the broncho alveolar lavage (BAL) fluid are elevated in atopic asthmatics and these levels increased in response to allergen exposure *(Redington et al., 1997).*

Induced sputum is a useful non-invasive technique to study airway inflammation in asthma. The clinical importance of TGF- β_1 levels in induced sputum samples of asthmatic children has been poorly studied.

AIM OF THE WORK

 $T_{\text{sputum samples from asthmatic children, as well as non}^{\text{he aim of this work is to determine TGF-}\beta_1 \text{ levels in induced}}$

- 1- Assess the potential role of TGF- β_1 in the pathogenesis of asthma.
- 2- Investigate the association between $TGF-\beta_1$ levels and the baseline lung function, the number of eosinophils in induced sputum samples, and other clinical indices.