Current Status of the Implication of the Clinical Practice Pattern in Hemodialysis Prescription in Regular Hemodialysis Patients in Egypt in Alexandria Governorate (sector C)

Thesis

Submitted for the partial fulfillment of Master Degree in Internal Medicine

By

Heba Mosad Ebrahim M.B.B.Ch – Ain Shams University

Supervised By

Prof. Dr. Howaida Abd-Elhameed El-Shennawy

Professor of Internal Medicine and Nephrology Faculty of Medicine - Ain Shams University

Dr. Haitham Ezzat Abd-Elaziz

Lecturer of Internal Medicine and Nephrology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University

2016

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	v
Introduction	1
Aim of the Work	4
Review of Literature	
Hemodialysis Prescription	5
Complications of Hemodialysis	27
Hemodialysis Associated Comorbidities	
Hemodialysis in Egypt	47
Patients and Methods	
Results	57
Discussion	
Summary and Conclusion	
Recommendations	
References	
Appendices	
Arabic Summary	

List of Abbreviations

Abbr. Full-term

AV	: Arteriovenous access
BFR	: Blood flow rate
BMI	: Body mass index
BP	: Blood pressure
CAPD	: Continuous ambulatory peritoneal dialysis
CKD	: Chronic kideny disease
CMS	: US Centers for Medicare and Medicaid Services
cTnT	: Cardiac troponin T
CV	: cardiovascular
CVC	: Chronic venous cathter
CVD	: Cardiovascular disease
DDS	: Dialysis Disequilibrium syndrome
DFR	: Dialysate flow rate
DM	: Diabetus mellitus
DOPPS	: Dialysis outcome and practice pattern study
ESA	: Erythropoiesis-stimulating agents
ESRD	: End stage renal disease
HBV	: Hepatitis B Virus
HCV	: Hepatitis C Virus
HD	: Hemodialysis
HDF	: Hemodiafiltration
HES	: Hydroxyethyl starch
HF	: Hemofiltration

List of Abbreviations (Cont.)

Abbr.

Full-term

Hgb	: Hemoglobin
HTN	: Hypertension
IDH	: Intradialytic hypotension
IPD	: Intermittent peritoneal dialysis
K/DOQI	: Kidney Disease Outcome Quality Initiative
KDIGO	: Kidney disease improving global outcomes
KOA	: The mass transfer area coefficient
$\mathbf{K}_{\mathbf{uf}}$: The ultrafiltration coefficient
MBD	: Mineral and bone disorder
MI	: Myocardial infarction
MOH	: Ministry of health
NKF	: National Kidney Foundation
РТН	: Parathyroid hormone
RRT	: Renal replacement therapy
SBP	: Systolic blood pressure
ТМР	: Transmembrane pressure
UF	: Ultrafiltration
URR	: Urea reduction ratio
β2M	: Beta 2 microblobulin

List of Tables

Table No	. Title Page No.
Table (1):	Elements of Hemodialysis Prescription
Table (2):	Hemodialysis Parameters according to K/DOQI guidelines (2006)
Table (3):	Distribution of the studied patients in different HD units
Table (4):	Number of physicians in different HD units
Table (5):	Number of nurses in different HD units 60
Table (6):	Number of machines in different HD units 61
Table (7):	Patientsrelateddemographiccharacteristics, dialysisduration and viralstatus in the study population62
Table (8):	ESRD Etiology in the study population 65
Table (9):	Different Comorbid conditions in the study population
Table (10):	Quality of life in the study population
Table (11):	Dialysis related characteristics in the study population:
Table (12):	Hemodialysis sessions- related complications in the study population
Table (13):	CKD anemia related therapies in the study population
Table (14):	CKD- MBD related therapies in the study population

List of Tables (Cont.)

Table No	. Title	Page No.
Table (15):	Supplemental therapies in the population	•
Table (16):	Serial follow up laboratory profistudy population	
Table (17):	Iron Profile in the study population	n90
Table (18):	Frequencies of hemoglobin, calc phosphorus in the study population	
Table (19):	Hemoglobin Category in the population	•
Table (20):	Calcium Category in the study pop	oulation 93
Table (21):	Phosphorus category in the population	•

List of Figures

Figure No.	Title Page No.
Figure (1):	Mechanisms of solutes removal in hemodialysis
Figure (2):	Comparison of urea clearance rates between low- and high-efficiency hemodialyzers
Figure (3):	Distribution of the studied patients in different HD units
Figure (4):	Number of physicians in different HD units 59
Figure (5):	Number of physicians in different HD units 60
Figure (6):	Number of physicians in different HD units 61
Figure (7):	Sex distribution in the study population
Figure (8):	Viral status in the study population
Figure (9):	ESRD Etiology in the study population
Figure (10):	Different Comorbid conditions in the study population
Figure (11):	Work status in the study population 69
Figure (12):	Dependency status in the study population 69
Figure (13):	Wheel chair status in the study population 70
Figure (14):	Frequency of HD sessions/week in the study population
Figure (15):	Duration of HD session in the study population
Figure (16):	Sponsoring status in the study population75
Figure (17):	Types of vascular access in the study population

List of Figures (Cont.)

Figure No.	Title I	Page No.
Figure (18):	History of access failure in the population	•
Figure (19):	Number of failed vascular access ev the study population	
Figure (20):	Criteria of dialyzers used in the population	•
Figure (21):	Criteria of dialysate used in the population	
Figure (22):	Anticoagulation type used in the population	
Figure (23):	Heparin dose in the study population	
Figure (24):	Hemodialysis sessions-related compli- in the study population	
Figure (25):	Different types of ESA used by the population	•
Figure (26):	ESA brands used by the study popula	tion 81
Figure (27):	Vitamin D supplement used by the population	•
Figure (28):	Different types of phosphorus binde by the study population	
Figure (29):	History of Calcimimetics used in th population	
Figure (30):	History of iron injection in the population	•
Figure (31):	History of vitamin B injection in th population	•

List of Figures (Cont.)

Figure No.	Title	Page	No.
Figure (32):	History of folic acid supplement in population	•	
Figure (33):	History of L-carnitine suppleme study population		
Figure (34):	History of Blood Transfusion in population	•	
Figure (35):	Hemoglobin Category in th population	-	
Figure (36):	Calcium category in the study popu	ulation	93
Figure (37):	Phosphorus category in the study p	opulation	94

List of Figures

First and foremost, I feel always indebted to **Allah**, the Most Beneficent and Merciful.

I wish to express my deepest gratitude and thanks to **Prof. Dr. Howaida Abd-Elhameed El-Shennawy**, Professor of Internal Medicine and Nephrology, Faculty of Medicine -Ain Shams University, for her constructive criticism, unlimited help and giving me the privilege to work under her supervision.

My most sincere gratitude is also extended to **Dr. Haitham Ezzat Abd-Elaziz,** Lecturer of Internal Medicine and Nephrology, Faculty of Medicine - Ain Shams University, for his enthusiastic help, continuous supervision, guidance and support throughout this work.

I can't forget to thank **Dr. Mohammed Mostafa**, Lecturer of Internal Medicine and Nephrology, Faculty of Medicine - Ain Shams University, for his great efforts in the statistical part of this work.

Last but not least, I can't forget to thank all members of my Family, for pushing me forward in every step in the journey of my life.

Candidate

🖎 Heba Mosad Ebrahim

Abstract

Uremia is a quite complex syndrome encompassing a metabolic disorders and accumulation of various sized uremic toxins); that it would be impossible for intermittent renal replacement therapy (RRT) to replace the homeostatic role of the kidneys. Hence, the importance of providing at least adequate dialysis .

Hemodialysis is the most successful and most commonly used form of organ replacement therapy.

Awareness of the potential complications of the procedure should facilitate preventive and remedial interventions. While many of the acute complications of hemodialysis are not immediately life threatening, they do add to the morbidity of dialysis patients and to the overall cost of the therapy. Cardiovascular complications are currently the most common complication of hemodialysis .

Key words: Uremia , Hemodialysis , Hemodialysis complications .

Introduction

Introduction

States suggest that 30%-40% of patients do not receive evidence-based care, while in 20% of patients care may be not needed or potentially harmful. However, relatively little information exists about how to apply evidence in clinical practice, and data on the effect of evidence-based guidelines on knowledge uptake, process of care or patient outcomes is limited (*Locatelli et al., 2004*).

Specific clinical guidelines have been developed to optimize the quality of anemia management secondary to chronic kidney diseases (CKD). As a result, the National Kidney Foundation Kidney Disease Outcome Quality Initiative (KVDOQ I) guidelines and the Renal-European Dialysis and Transplantation Association best practice guidelines have been published in USA & Europe. Therefore; clinical practice guidance help individual physician and physicians as group to improve their clinical performance and thus raise standard of patient care towards optimum levels, They may also help to insure that all institution provide an equally good base line standard of care (*Cameron, 1999*).

Introduction

Guidelines practiced on anemia and actual practices are much different with different places and patients according to treatment. Moreover, in individual countries and individual units within countries local circumstances relating to economic conditions; organization of health care delivery or even legal constraints may render the immediate implementation of best practice guidelines difficult or impossible. Nevertheless, they provide a goal against which progress can be measured (*Locatelli et al., 2004*).

Dialysis Outcomes and Practice Patterns Study (DOPPS) has observed a large variation in anemia management among different countries. The main hemoglobin concentration in hemodialysis patient varied widely across the studied countries ranging between 8g/dl to 11g/dl. The percentage of prevalent hemodialysis .patient receiving erythropoietin stimulating agent 'ESA' has increased from 75% to 83%. The percentage of HD patient receiving iron varies greatly among DOPPS countries range from 38% to 89% (*Locatelli et al., 2004*).

There are challenges in implanting clinical guidelines in medical practice. Overall DOPPS data which show that, despite the availability of practice guidelines for treatment of renal anemia, wider variation in anemia management exists as gap between what is recommended by the guidelines and is accomplished in every day clinical practice. Compliance with clinical guidelines is an importance indicator of quality

and efficacy of patient care at the same time their adaptation in clinical practice may be initiated by numerous factors including; clinical experts, patient performance, constrains of public health policies, community standard, budgetary limitation and methods of feeding back information concerning current practice (*Cameron, 1999*).