Experimental Study of the Effect of Low Dose Aspirin and Betamethasone on the Patency Rate of Microvascular Polytetrafluoroethylene Grafts (PTFE)

Thesis Submitted for Partial Fulfillment of The M.D. Degree in Plastic and Reconstructive Surgery

Presented by Hossam El din Mohammed Abuelatta M.B.B.Ch, M.Sc. in General Surgery

Supervised by

Prof. Dr. Ikram Ibrahiem Safe

Professor and Head of Plastic and Reconstructive Surgery Department Faculty of Medicine, Ain Shams University

Prof. Dr. Ayman Abu Elmakarem Shaker

Professor of Plastic and Reconstructive Surgery Faculty of Medicine, Ain Shams University

Dr. Ashraf Maher Farid

Assistant Professor of Plastic and Reconstructive Surgery Faculty of Medicine, Ain Shams University

Dr. Hale Tufan

Assistant Professor of Pharmacology Faculty of Medicine, Baskent University Ankara, Turkey

> Faculty of Medicine Ain Shams University 2005

Thank you very much my **Great God**, I relate to you any success in my life.

<u>Acknowledgement</u>

First of all, I would like to express my deep gratitude and respect to **Prof. Dr. Ikram Safe** Head of Plastic and Reconstructive Surgery Department for giving me the honor to be under his supervision and for his continuous valuable advice, support and time that he gave to me during this work.

I am truly indebted to Prof. Dr. **Ayman Abu Elmakarem** for his kind supervision, wise help and his follow up throughout the study.

My sincere thanks and appreciation go to **Prof. Dr. Ashraf Maher** for his meticulous supervision and for providing me a lot of encouragement and support during this study.

I would like to express my sincere thanks and appreciation to **Prof. Dr. Mostafa Hemeda** for giving me the opportunity to do this work in Baskent University and for his continuous encouragement.

Finally my respect and thanks to **all the members** of Plastic Surgery Department of Ain Shams University.

Special Acknowledgement

All my gratitude and respect go to **Prof. Dr. Mehmet Haberal** President of **Baskent University** in which I did this study. I would like to express my thanks to him for giving me this valuable chance of doing this study in his university.

No words might give **Prof. Dr. Hale Tufan** her rights of thanks for her endless help, support and supervision during this work. I am truly indebted to her.

I wish to express my thanks to **Prof. Dr. Nihan Haberal** Professor of Pathology and **Prof. Dr. Attila Sengen** Professor of Vascular Surgery and all the technicians in the research center of **Baskent University** for their kind help throughout all this study.

List of contents

		Page
() J	Introduction	1
(P)	Aim of the Work	6
() J	Review of Literature	7
	Arterial Grafts	7
	ى Vein Grafts	12
	🤄 Vascular Synthetic Grafts	29
	🕏 Improving Vascular Synthetic Grafts Patency	52
() J	Materials and Methods	81
() I	Results	<i>102</i>
() I	Discussion	135
() I	Summary and Conclusion	145
(B)	References	<i>149</i>
() J	Arabic Summary	174

List of Abbreviations

Abbreviation	Word
PTFE	Polytetrafluoroethylene
PUs	Polyurethanes
IH	Intimal hyperplasia
VSMC	Vascular smooth muscle cell
MMPs	Metalloproteinase
PDGF	Platelet derived growth factor
EDRF	Endothelial derived relaxing factor
NO	Nitrous Oxide
ET	Endothelin
ECE	Endothelin-converting enzyme
ECs	Endothelial cells
LDF	Laser doppler flometry
BPU	Blood perfusion unit
PE	phenylephrine
ITB	Isolated tissue bath
L-NAME	Nitro-L-arginine methyl ester

(I)

<u>List of Figures</u>

Figure No.	Description	
Figure 1	Differential dilatation of vein graft.	
Figure 2	Suturing vein graft at angle.	
Figure 3	Suturing vein graft at angle.Microstructure of PTFE.	
Figure 4	Patency rate & graft survival time.	39
Figure 5	Normal vessel structure.	42
Figure 6	Quiescent state of VSMCs.	46
Figure 7	The activated state of VSMCs.	47
Figure 8	Response of vessel to injury.	49
Figure 9	Response of vessel to inflammation.	50
Figure 10	Endothelin-1 (ET-1) biosynthesis.	61
Figure 11	Decellularized vein.	78
Figure 12-18	<u> </u>	
Figure 19-20		
Figure 21-24	24 Anastomosis and patent graft.	
Figure 25	(LDF 2) reading.	
Figure 26		
Figure 27	Ackland test.	96
Figure 28	LDF measurements.	
Figure 29	ITB system.	
Figure 30	ITB measurements.	
Figure 31	Macroscopic picture of patent grafts.	
Figure 32	Macroscopic picture of closed grafts.	
Figure 33	Percentage of patent grafts in each group.	
Figure 34	LDF measurements before and after grafting.	109
Figure 35	LDF before grafting and after sacrification.	109

(**III**)

		110
Figure 36	Photomicrograph showing No IH	112
	formation.	112
Figure 37	Photomicrograph showing IH formation.	
Figure 38	Percentage of IH in all groups.	
Figure 39	Percentage and course of IH in subgroups	
of control group.		
Figure 40 Percentage and course of IH in subgroup		117
of aspirin group.		
Figure 41	Percentage and course of IH in subgroups	120
	of betamethasone.	
Figure 42	Percentage and course of IH in subgroups	120
	of BQ123 group.	
Figure 43 Percentage and course of IH in subgroups		124
	of phosphoramidon group.	
Figure 44 Percentage of IH at the proximal and		124
	distal anastomosis sites.	
Figure 45	Relation between IH and patency rate.	125
Figure 46	Photomicrograph showing	126
endothelialization of the graft near		
	anastomosis site in 2 weeks.	
Figure 47	Photomicrograph showing complete	126
	endothelialization of mid graft area in 6	
	weeks.	
Figure 48	Photomicrograph showing mild	128
	inflammatory reaction & fibrin	
	deposition in 4 weeks.	
Figure 49	Photomicrograph showing sever	128
	inflammatory reaction in 4 weeks control	
subgroup.		
Figure 50 Photomicrograph showing calcification i		129
the graft wall in control group.		
Figure 51 Photomicrograph showing calcification in		129
IH layer in control group.		

Figure 52	Photomicrograph showing deficient endothelializ- ation in mid graft area in 6 weeks betamethasone subgroup.	130
Figure 53	Photomicrograph showing patent 130 aneurysm with organized thrombus inside the lumen.	
Figure 54	Graft thrombosis in 4 weeks subgroup.	
Figure 55	Photomicrograph showing thrombus in the graft.	
Figure 56	Patent aneurysm.	
Figure 57	Photomicrograph showing graft surrounded by a sac filled with pus.	

<u>List of Tables</u>

Table No.	Description	
Table 1	Effects of ET on various tissues.	
		64 107
Table 2	Patency rate in groups.	
Table 3	ITB results.	
Table 4	Percentage of IH in groups.	
Table 5	Data of control group.	
Table 6	Data of aspirin group.	
Table 7	Data of betamethasone group.	
Table 8	Data of BQ123 group.	
Table 9	Data of phosphoramidon group.	
Table 10	Percentage of IH at the proximal	122
	anastomosis sites in all groups.	
Table 11	Percentage of IH at the distal anastomosis	
	sites in all groups.	

List of Erratum

Page number	False word	Correction
Ι	Flometry	Flowmetry
7	1948	1978
7	Makes	Make
19	Radiated	Irradiated
27	The	That
40	Heparin	Heparan
52	No endothelin inhibitors	
128	Depostion	Deposition
128	Sever	Severe

References:

Lime CH., Mardini S., Lim YT., Yeh IT., Wei FC, Chen HC.

(2004): Sixty-Five clinical cases of free tissue transfer using long AV fistulas or vein grafts. J. trauma: 56 (5), 1107.

The advances of microvascular surgery over the years have resulted in an increased need for small diameter vessel replacements. Reversed autologous vein grafts are presently the most suitable material for use as arterial substitutes in microsurgical procedures. However dissecting, harvesting and preparing a vein graft add time to any microsurgical procedure, also the choice of veins may be limited by a number of factors like trauma or obliterative vascular disease. Additionally one or more veins must be sacrificed, a donor site scar is left and usually one must compromise in terms of matching sizes and diameters between vein graft and recipient vessel (*Lanzetta*, 1998).

Bridging microvascular defects with synthetic grafts would have the great advantage of providing a choice of the most optimal size and shape with decreased operative time. Largediameter synthetic grafts with their various lengths and numerous configurations have gradually found their place in vascular surgery and are currently very widely used in a great variety of clinical situations. However small diameter synthetic grafts have not left the laboratory as they are disappointing in their high rate of thrombosis and still considered unreliable (*Lanzetta*, 1998).

Nowadays, there are many types of synthetic grafts on the horizon, such as PTFE, Dacron and Polyurethanes (PUs) grafts. The ideal vascular graft should be characterized by its mechanical attributes and post-implantation healing responses. Mechanical strength is a paramount issue; grafts placed in the arterial circulation should be capable of withstanding long-term haemodynamic stress without material failure which might be catastrophic. Availability, suturability and simplicity of handling are desirable for minimizing operating time and risk. The graft should be resistant to both thrombosis and infection and optimally would be completely incorporated by the body to yield a new vessel resembling a native artery in structure and function *(Conte, 1998)*.

The most widely used synthetic graft is PTFE because of a relatively low inherent thrombogencity and satisfactory tissue healing. PTFE also exhibits physical properties such as biocompatibility, inertness, negative charge and hydrophobia which all help to reduce the occurrence of thrombosis with promising patency rate (*Cooley*, 1998).

However with such ideal characteristic, authors have reported highly varying patency rate ranging from complete failure to as high as 90 % patency rate after 2 weeks by *Parsa and Spira (1979), Caudrs (1984), Daniel (1985), Zdanowski et* al. (1992), Van der lei and Robinson (1993), Lemson et al. (2000).

The factors responsible for synthetic grafts failure were thoroughly investigated and optimized, as regard the graft materials by using PTFE grafts (with radial support, large pores and fibril length of at least 60 μ m) and as regard the technical error (by meticulous techniques and the intra-operative observation of the anastomosis for 1 hour to insure early patency). Therefore the remaining factor incriminated in synthetic grafts failure is **intimal hyperplasia** (**IH**) that develops at the anastomosis sites with subsequent slowing of the circulation, platelet aggregation and thrombus formation (*Demiri et al.*, *1999*).

Intimal hyperplasia is a process by which the cell population increases within the innermost layer of the vessel wall, such as occurs physiologically during closure of the ductus arteriosus and during involution of the uterus. It also occurs pathologically in pulmonary hypertension, atherosclerosis, transplanted organs, and after angioplasty. The underlying cause of intimal hyperplasia is migration and proliferation of vascular smooth muscle cells (VSMCs) from media to intima (phenotypic modulation) (*Newby and Zaltsman, 2000*).

The key stimuli for IH are injury, inflammation and increased mean wall stress. They activate heparanases and a cascade of proteases that together loosen the connections of the extracellular matrix with the VSMCs surface which provides the trigger for phenotypic modulation. Also peptide growth factors agents such as thrombin, endothelin-1 and angiotensin-II and inflammatory cytokines act co-operatively to trigger proliferation and migration of VSMCs (*Newby and Zaltsman, 2000*).

Complex interactions with platelets and subsequent release of platelets derived factors and interaction with the adjacent endothelial cells lead to collagen and fibrin deposition and the development of IH. A successful drug that could limit this hyperplastic response may help to improve patency rate of synthetic grafts (*Petrik et al., 1998*).

Therefore the extent of the intimal hyperplasia formation may be theoretically decreased by the use of pharmacological drugs that might inhibit (1) the platelets activity (Antiplatelet) like *Low Dose Aspirin*, (2) the fibrin deposition (Glucocorticoids) like *Betamethasone*, (3) The action of endothelin (Endothelin Receptor Antagonist) like *BQ123*, (4) the endothelin formation (Endothelin Converting Enzyme Inhibitor) like *Phosphoramidon*, with subsequent improvement of the patency rate.