The Role of PET CT in The Evaluation of Hepatic Focal Lesions

Essay

Submitted For Fulfillment of Master Degree in Radiodiagnosis

By Shaimaa Mahmoud Ebrahim Mokbel M.B, B.ch Supewised By

Prof. Dr. Sameh Abdel-Raouf Mahdy

Assistant Professor of Radiodiagnosis Faculty of Medicine-Ain Shams University

Dr. Mona Yehia Hemimy

Lecturer of Radiodiagnosis Faculty of Medicine- Ain Shams University

> Faculty of Medicine Ain Shams University 2010

Acknowledgement

First of all, thanks to **Allah** for giving me the chance and power to be what I am.

I wish to express my deepest thanks and appreciation to **Dr. Sameh Abdel-Raout Mabdy,** Assistant Professor of Radiodiagnosis Faculty of Medicine, Ain shams University, under whose supervision this work was produced

I would also like to express my grateful appreciation to **Dr. Mona Yehia Hemimy,** Lecturer of Radiodiagnosis Faculty of Medicine, Ain shams University, for her close assistance and continuous advice.

Lastly I would like to thank my father, mother and my Brother for their love and care.

Shaimaa

Mahmoud

Aim Of The Work

The aim of this work is to highlight the role of PET CT in better characterization of hepatic focal lesions.

Contents

- 1- Introduction and aim of the work.
- 2- Anatomy of the liver :

gross anatomy and radiological anatomy.

- 3- Pathology of hepatic focal lesions.
- 4- Physics and technique of Positron Emission Tomography (PET) and (PET CT).
- 5- PET and PET CT manifestations.
- 6- Summary and conclusions.
- 7- References.
- 8- Arabic summary.

List of tables

Table	Title of table	Page
No.		No.
Table (1)	Classification of liver masses	23
Table (2)	the American Joint Committee on Cancer TNM staging system for hepatocellular cancer:	38
Table (3)	Common Positron Emitters	56

List of Figures

Figure	Title	Page
No.		
1	The Superior hepatic surface	10
2	Posterior and Inferior hepatic surface	11
3	Segmental anatomy of the liver	16
4	Segmental anatomy of the liver is	20
	demonstrated at three levels on contrast	
	enhanced CT images	
5	Liver cell adenoma	27
6	Focal nodular hyperplasia	30
7	Photograph of resected specimen shows the	32
	haemangioma	
8	The photomicrograph, Hemangioma	33
9	Hepatocellular carcinoma	40
10	Fibrolamellar carcinoma.	43
11	Cholangiocarcinoma.	46
12	Hepatoblastoma	48
13	The photomicrograph Hepatoblastoma	49

List of Figures (cont.)

Figure No.	Title	Page
14	Schematic of positron and electron beta	55
	particle emission	
15	Medium sized cyclotron	57
16	uptake and metabolism of glucose in a normal cell	59
17	Schematic representation of ¹⁸ F- fluorodeoxyglucose (FDG) uptake	60
18	The distribution of FDG within a normal individual	62
19	Coincidence Detection	64
20	Scatter and Random Coincidence	65
21	A schematic illustration of a PET CT system	69
22	The 64-slice Biograph Truepoint positron emission tomography and computed tomography	72
23	Typical scout image obtained during an FDG PET CT study	78
24	Typical imaging protocol for combined PET CT	81
25	Physiologic muscle activity	85
26	High-density implants generate streak artifacts on CT	86
27	Effect of respiratory motion in CT propagates into the emission image through the attenuation correction	88
28	Contrast media artifact	90

List of Figures (cont.)

Figure No.	Title	Page
0		0

29	False-positive PET CT results due to	93
	radiation-induced inflammation in the	
	liver after neoadjuvant therapy	
30	Normal F-18-FDG PET scan in a patient	95
•••	who has diffuse infiltrating HCC and	10
	pulmonary metastases	
31	Restaging in 56-year-old man with	99
	colorectal carcinoma	
32	Patient with metastatic mucinous	100
	adenocarcinoma of cecum	
33	Detection of residual or recurrent tumor in	102
	63-year-old man with a history of multiple	
	metastatic liver lesions	
34	66-year-old woman with metastatic	103
	colorectal adenocarcinoma after multiple	
	liver radiofrequency ablation procedures	
35	Various F-18-FDG uptake patterns in	107
	HCCs	
36	Comparison of F-18-FDG PET and C-11-	108
	acetate PET in a patient who has low-grade	
	HCC	
37	Intrahepatic mass-forming	112
	cholangiocarcinoma	
38	False-negative F-18-FDG PET-CT in a	113
	mixed periductal-infiltrating and mass-	
	forming cholangio-carcinoma	
39	Patient with poorly differentiated	114
40	adenocarcinoma of unknown primary	
40	F-18-FDG PET in a patient who has benign	117
41	post–inflammatory granuloma	110
41	Illustrative case1: A 64-y-old male with	118
	carcinoma of sigmoid	110
42	Illustrative case2: A 66-y-old man with	119
	carcinoma of sigmoid	
43	Illustrative case3: Contrast CT scan	120
	showing right lobe and caudate lobe	
	mass and portal vein thrombus of the	
	right branch in the same patient	

List of Figures (cont.)

Figure No.	Title	Page
44	Illustrative case4: F-18-FDG PET CT in a	121
	patient who has HCC and colon cancer	
45	Illustrative case5: A 75-year-old man is	122
	referred before surgical resection of a rectal	
	cancer	
46	Illustrative case6:This 72-year-old man	123
	had colorectal cancer and metastatic disease	
	in the liver.	
47	Illustrative case: Early and delayed phase	124
	FDG-PET CT of a 54 year old female with	
	metastatic colorectal carcinoma	

Introduction

The increased use of radiological imaging has led to much more frequent identification of hepatic focal lesions. Diagnosis depends on whether the patient has underlying liver disease, when hepatocellular carcinoma has to be excluded, or whether the lesion is benign or a metastasis. (Sherlock and Dooly, 2002). Detection and characterization of liver lesions often present a diagnostic challenge to the radiologists (Namasivayam et al., 2007).

Benign hepatic tumors include a broad spectrum of lesions. They are increasingly reported with the widespread use of sensitive imaging studies. They usually occur in asymptomatic patients with or without underlying liver disease. The most common benign hepatic tumors include cavernous hemangioma, focal nodular hyperplasia, hepatic adenoma, and nodular regenerative hyperplasia (**Choi and Nguyen, 2005**).

Malignant tumours arising in the liver can be primary, in the form of hepatocellular carcinoma, or secondary, resulting from dissemination of a primary tumour outside the liver. Metastatic disease involving the liver represents a common challenge in oncology. The liver is the site of that most common metastases arise from gastrointestinal malignancies; other primary sites of origin include breast, lung, pancreas, and melanoma. Advances in imaging techniques, notably computed tomography (CT), magnetic resonance imaging (MRI), ultrasonography (US), positron emission tomography (PET), and integrated PET CT imaging, have increased the ability to detect and characterize hepatic focal lesions. This has led to increased interest in both hepatic imaging and image-guided hepatic interventions (Choi, 2006).

Functional with imaging positron emission tomography (PET) is playing an increasingly important role in the diagnosis and staging of malignant disease. PET imaging with the fluorine 18 (18F)-labeled glucose analogue 18 fluorodeoxyglucose (FDG) is a relatively recent addition the technology for imaging cancer. FDG PET to complements the more conventional anatomic imaging modalities of computed tomography (CT) and magnetic resonance (MR) imaging. Anatomic imaging modalities are complementary to functional imaging in the sense that while CT provides accurate localization of organs and lesions, PET provides information on tissue function, both normal and pathologic (**Blodgett et al., 2007**). Combining PET with a high-resolution anatomical imaging modality such as computed tomography (CT) can help both identify and localize functional abnormalities (**Townsend, 2008**).

Aim Of The Work

The aim of this work is to highlight the role of PET CT in better characterization of hepatic focal lesions.

Introduction and Aim of the work

ANTOMY OF THE LIVER

Introduction:

Liver is one of the first organs to develop in the embryo, and it rapidly becomes one of the largest organs in the fetus (*Zaret*, 2001). The liver is the largest internal organ in the body, accounting for approximately 2% to 3% of the total body weight of an adult (*Skandalakis et al.*, 2004).

Longmire ,1982 who devoted his life to the study of the liver, called it a "hostile" organ because it welcomes malignant cells and sepsis so warmly, because it bleeds so copiously, and because it is often the first organ to be injured in blunt abdominal trauma. Liver anatomy can be described according to 2 different aspects, (1) morphologic anatomy and (2)functional anatomy (*Bismuth*, 1988).

Morphologic Anatomy:

Surfaces of the liver and their relations :

Sheltered by the ribs in the right upper quadrant, the upper border lies approximately at the level of the nipples