

Ain Shams University

Faculty of Engineering

Computers and Systems Engineering Department

Rule-Based Supervisory Control System

Submitted By

Eng. George Halim Riad

B.Sc. in Computers and Systems (July 2002)

Supervised By

Prof. Dr. M. A. Sheirah

Dr. A. H. Yousef

Cairo 2010

Abstract

Rule-Based Supervisory Control System

The thesis shows how fuzzy logic can be used as a supervisory controller. The application of fuzzy logic in control is illustrated by a case study, in which a Fuzzy Supervisory Control System (FSCS) is added to a fed-batch baker's yeast fermentation process. The FSCS was added as a layer above the conventional PI controller layer. The initial biomass concentration has an ideal initial value that leads to an ideal final biomass concentration. If this ideal initial value is degraded, the final value will also be degraded, which is a major problem in the fermentation process, because one of the main goals is to maximize the final biomass concentration as much as possible. The FSCS layer was able to solve this problem, without affecting the Respiratory Quotient (RQ) of the fermentation process, a problem that the conventional PI controller was not able to solve alone.

The proposed control scheme was simulated, verified and compared to the conventional control scheme alone. Simulation results show the power of the proposed algorithm to minimize control performance index like Integral Square Error (ISE).

Keywords

Fuzzy Logic, Intelligent Control, Adaptive Control, Rule-Based, Supervisory Control, Simulation, Nonlinear Process Control, Fermentation, Fed-Batch, Baker's Yeast

Acknowledgements

I give all my thanks to GOD. Thanks more than anyone can say.

I would like to express my deep gratitude to Prof. Dr. M.A. Sheirah, Dr. Ahmed Hassan and Dr. Mohamed Fadel for their suggestions, valuable advises, and their great effort revising the thesis. I deeply express my thanks to them for their care, moral support, encouragements and guidance.

I would like to thank all people who helped me on preparation of this thesis, especially my family, my wife and my beloved daughter Helen, for their unlimited support during the duration of collecting the material, thinking and writing the thesis.

Also, in memory of my grandma.

Table of Contents

List of Tables	VIII
List of Figures	IX
Chapter 1: Introduction	1
1.1. Background to Research Work	1
1.2. Thesis Challenge and Contribution	1
1.3. Thesis Layout	2
Chapter 2: The Supervisory Contro	l Theory3
2.1. Supervision	3
2.2. The Supervisory Control Theory	3
2.3. The Supervisory Controller	4
2.4. Supervisory Control Schemes	5
2.5. Literature	6
Chapter 3: Fuzzy Logic	12
3.1. Introduction	12
3.2. What is Fuzzy Logic?	
3.3. Fuzzy Systems	13
3.3.1. The Fuzzifier	13
3.3.2. The Fuzzy Rule Base	14
3.3.3. The Fuzzy Inference Engine	14
3.3.4. The Defuzzifier	14
3.3.5. Fuzzy Sets	14
3.3.6. Fuzzy Partition	15
3.3.7. Six-Step Inference Algorithm	16
3.3.8. Inference Examples	19
3.4. Rule Base Properties	21
3.4.1. MATLAB	

3.5. Design of Fuzzy Systems	22
Chapter 4: Fed-batch Baker's Yeast Ferme	ntation
Process	24
4.1. Introduction	24
4.2. Yeast Production	26
4.2.1. Commercial Yeast Diagram	
4.3. Raw Materials	29
4.3.1. Carbon and Energy Sources – Molasses	29
4.3.2. Nitrogen Sources – Ammonia	29
4.3.3. Minerals – Phosphates	
4.3.4. Minerals – Copper Sulphate	
4.3.5. Minerals – Magnesium and Zinc Sulphate	
4.3.6. Sodium Carbonate	
4.3.7. Hypochlorite	
4.3.8. Sulphuric Acid	
4.3.9. Vitamins	
4.3.10. Air	
4.4. Phases of Production	31
4.4.1. Phases One and Two	
4.4.2. Figure 4.3 Details during Phases One and Two	
4.4.3. Phases Three and Four	
4.4.4. Figure 4.4 Details during Phases Three and Four	
4.5. Performance Indices	
4.6. Fed-batch Baker's Yeast Process Mathematical Model	40
4.7. Practical Experiment	44
4.7.1. Introduction	44
4.7.2. Fuzzy Description of Fermentation Processes	45
4.7.3. Set of Actions	45
4.7.3.1 First Phase	46

Action C	ne: Adding Sulphuric Acid	46
Action T	wo: Adding Sodium Carbonate (Base)	46
Action T	hree: Ammonia Feeding Increase/Cut	47
Action F	our: Seed Yeast Addition (other than the initial seed)	47
Action F	ive: Air Increase/Decrease	48
Action S	ix: Cut Whole Feeding	48
Action S	even: Adding Urea	49
4.7.3.2	Second Phase	49
Action C	One: Adding Sulphuric Acid	49
Action T	wo: Adding Sodium Carbonate (base)	49
Action T	hree: Ammonia Feeding Increase/Cut	50
Action F	our: Air Increase/Decrease	50
Action F	ive: Cut Whole Feeding	51
Action S	ix: Adding Urea	51
4.7.3.3	Third Phase	51
Action C	One: Adding Sulphuric Acid	51
Action T	wo: Adding Sodium Carbonate (base)	52
Action T	hree: Air Increase/Decrease	52
Action F	our: Cut Whole Feeding	52
Action F	ive: End Fermentation and Start Separation	53
Action S	ix: Adding Urea	54
4.7.4. So	ftware Program	54
4.7.4.1	The DB Structure	54
4.7.4.2	MATLAB Script File	56
4.7.4.3	Program Logic	58
4.7.4.4	Fuzzy System Software in MATLAB	58
Chapte	r 5: Fuzzy Rule-based Supervisorv C	ontrol
		4.
System f	or rea-datch Baker's Yeast Fermenta	ition
Process.	•••••	63

References	86
Chapter 6: Conclusion and Future Work	85
5.6. Cost Function	77
5.5. Results & Observations	74
5.4. Results and Discussions	70
5.3.2. FSCS Solution	67
5.3.1. Conventional Solution	67
5.3. Conventional vs. FSCS Solutions	66
5.2. Problem Statement	64
5.1. Introduction	63

List of Tables

Table 4-1 Initial Conditions of State Variables	40
Table 4-2 Model Parameters	41
Table 5-1 Results of the Experiments (Without any Control)	73
Table 5-2 Results of the Experiments (With PI Controller)	73
Table 5-3 Results of the Experiments (With FSCS)	73
Table 5-4 Experiments done on the cost function J	78

List of Figures

Figure 2-1 Fuzzy Supervisory Control System (FSCS) Configurations	5
Figure 2-2 Hybrid Fuzzy-PI Controller [18]	8
Figure 3-1 Triangular Fuzzifier	13
Figure 3-2 Fuzzy Set	15
Figure 3-3 Fuzzy Partition	16
Figure 3-4 Inference Algorithm	18
Figure 3-5 Fuzzy System	19
Figure 3-6 Min-Max Inference with CoG Defuzzification	21
Figure 4-1 Baker's Yeast Production Process	25
Figure 4-2 Commercial Yeast Diagram	29
Figure 4-3 The Fermentor during phases one and two	32
Figure 4-4 The Fermentor during phases three and four	36
Figure 4-5 The Glucose (substrate) Feeding Strategy	44
Figure 4-6 Action One Input Data Table	55
Figure 4-7 Output Data before Running the Program	55
Figure 4-8 Output Data after Running the Program	56
Figure 4-9 Software Program	59
Figure 4-10 pH Membership Function	60
Figure 4-11 Bacteria Membership Function	61
Figure 4-12 Time Membership Function	61
Figure 4-13 Sulphuric Acid Membership Function	62
Figure 4-14 Sodium Carbonate Membership Function	62
Figure 5-1 Effect of the Initial Biomass Concentration on the Final Resul	lt64
Figure 5-2 Structure of the Model for the Experiments	65
Figure 5-3 Difference Between the Ideal Cx and Cx when the Initial H	Biomass
Concentration was not ideal (0.3 C-mol/L instead of 0.54 C-mol/L)	65
Figure 5-4 Difference Between the Ideal RQ and RQ when the Initial H	Biomass
Concentration was not Ideal (0.3 C-mol/L instead of 0.54 C-mol/L).	66

Figure 5-5 Structure of the Conventional Solution Implemented as a	PI
Controller	.67
Figure 5-6 Structure of the FSCS Solution	.68
Figure 5-7 Input "Error" Membership Function	.69
Figure 5-8 Output "Added Substrate Feed" Membership Function	.69
Figure 5-9 Difference Between the Various Biomass Concentration Profi	iles
when the Initial Biomass Concentration was not ideal (0.3 C-mol/L)	.70
Figure 5-10 Difference Between the Various RQ Profiles when the Ini	tial
Biomass Concentration was not Ideal (0.3 C-mol/L)	.71
Figure 5-11 Difference Between the Ideal RQ and the RQ Profiles under	the
Conventional PI Controller when the Initial Biomass Concentration was	not
Ideal (0.3 C-mol/L)	.72
Figure 5-12 Final Biomass Concentration [18]	.75
Figure 5-13 The Oscillations [18]	.75
Figure 5-14 No Oscillations [18]	.75
Figure 5-15 On/Off controller [15]	.76
Figure 5-16 Fuzzy controller [18]	.76
Figure 5-17 Various profiles with different values of λ when Cx_Init = 0.4	.79
Figure 5-18 Various profiles with different values of λ when Cx_Init = 0.3	.80
Figure 5-19 Structure of the FSCS tuning the PI	.81
Figure 5-20 Membership function of the initial biomass concentration	.81
Figure 5-21 Membership function of λ	.82
Figure 5-22 Membership function of P value when Cx_Init = 0.4	.82
Figure 5-23 Membership function of I value when Cx_Init = 0.4	.83
Figure 5-24 Membership function of P value when Cx_Init = 0.3	.84
Figure 5-25 Membership function of I value when Cx_Init = 0.3	.84

1.1. Background to Research Work

The aim of the research is to introduce Fuzzy Logic as a supervisory controller layer, above the conventional PI controller layer. The Fuzzy Supervisory Control System (FSCS) layer was able to decrease the degradation in the performance, when the ideal input and operation conditions were not satisfied. The application of fuzzy logic in control is illustrated by a case study, in which a Fuzzy Supervisory Control System (FSCS) is added to a fed-batch baker's yeast fermentation process. The FSCS was added as a layer above the conventional PI controller layer.

1.2. Thesis Challenge and Contribution

In this thesis, conventional and fuzzy control algorithms are studied and discussed. The thesis represents how Fuzzy Supervisory Control Systems, are used with conventional controllers to have better performance for control loops.

In order to improve the process final results; if this process was subjected to different non ideal initial values; a control scheme that integrates conventional PI controller with intelligent fuzzy controller is proposed. This fuzzy controller is tuned to minimize the error due to different initial values.

Concerning the fermentation process, the initial biomass concentration has an ideal initial value that leads to an ideal final biomass concentration. If this ideal initial value is degraded, the final value will also be degraded, which is a major problem in the fermentation process, because one of the main goals is to maximize the final biomass concentration as much as possible.

The FSCS layer was able to solve this problem, without affecting the Respiratory Quotient (RQ) of the fermentation process, a problem that the conventional PI controller was not able to solve alone.

The proposed control scheme was simulated, verified and compared to the conventional control scheme alone. Simulation results show the power of the

proposed algorithm to minimize control performance index like Integral Square Error (ISE).

1.3. Thesis Layout

Chapter 2 presents the supervisory control theory and the supervisory controllers.

Chapter 3 discusses Fuzzy Logic basics including fuzzy sets and membership functions. The fuzzifiers and defuzzifiers are defined and explained. Also some fuzzy controllers are discussed. The chapter also presents different applications that use Fuzzy Logic.

Chapter 4 presents a detailed explanation of the process under study. The fedbatch baker's yeast fermentation process was chosen as a case study for this thesis. The chapter presents the fermentation process description and the details of each stage, besides its mathematical model. A practical experiment is also presented. A brief literature about the previous work done in the fermentation process control is finally presented.

Chapter 5 discusses how Fuzzy Logic was used as a supervisory control system on a fed-batch baker's yeast fermentation process, previously controlled by a conventional PI controller.

Chapter 6 concludes the thesis and represents future work.

Chapter 2: The Supervisory Control Theory

In This chapter, the Supervisory Control Theory and the Supervisory Controllers will be introduced.

2.1. Supervision

The supervision in the supervisory control theory is understood as the action of maintaining the closed-loop behavior, of a given process, within certain boundaries, by disabling the execution of controllable events. However, the execution of an operating procedure in a process plant involves not only the disabling of certain events, but actually the enforcement of others [1].

During manual operation, a human operator is normally responsible for assigning set points to regulatory controllers, performing discrete control actions, process monitoring and taking corrective measures when an abnormal situation is detected. These activities are collectively called 'supervision' or 'supervisory control' [2].

2.2. The Supervisory Control Theory

The supervisory control theory is a method for automatically synthesizing supervisors that restrict the behavior of a plant such that as much as possible of the given specifications are fulfilled. The plant is assumed to spontaneously generate events. The events are in either one of the following two categories **controllable** or **uncontrollable**. The supervisor observes the string of events generated by the plant and might prevent the plant from generating a subset of the controllable events. However, the supervisor has no means of forcing the plant to generate an event [3].

Supervisory control is a general term for control of many individual controllers or control loops, whether by a human or an automatic control system, although almost every real system is a combination of both. A more specific use of the term is for a SCADA system, or Supervisory Control And Data Acquisition system, which refers to a specific class of systems that can be purchased, usually for use on fairly small remote locations [4].

Supervisory control often takes one of two forms. In one, the controlled machine or process continues autonomously. It is observed from time to time by a human who, when deeming it necessary, intervenes to modify the control algorithm in some way. In the other, the process accepts an instruction, carries it out autonomously, reports the results and awaits further commands. With manual control, the operator interacts directly with a controlled process or task using switches, levers, screws, valves etc, to control actuators. In contrast, with automatic control, the machine adapts to changing circumstances and makes decisions in pursuit of some goal which can be as simple as switching a heating system on and off to maintain a room temperature within a specified range [4].

2.3. The Supervisory Controller

A supervisory controller is a controller which operates only when some undesirable phenomena occurs. In other words, the supervisory controller evaluates whether local controllers satisfy prescribed performance criteria, diagnoses causes for deviation from the performance criteria, plans actions, and executes the planned actions. Typical goals for supervisory controllers are safe operation, highest product quality, and most economic operation. For example, when the state hits the boundary of constraint set, the supervisory controller begins operation to force the state back to the constraint set [5].

During plant running, the operator performs actions based on his knowledge of the components and how they interact. The operator actions can be categorized as follows [5]:

- a. Binary Actions: change in the structure of the plant and switching to other plant configurations. Examples are on/off valves.
- b. Prepare Actions: prepare the whole plant, or part of the plant, for closed loop control, with set points selected by the operators. An example is to

start a pump in order to obtain a minimum flow rate of steam before switching to automatic control.

- c. Control Actions: closed loop control around proper set points. An example is control of steam flow rate by automatically adjusting pump speed.
- d. Corrective Actions: take actions when malfunction occurs. An example is servo valve that does not function because it sticks.

A high level controller, like supervisory controller, works on the same level as the human operator. It takes over a part of, or the operator's entire job, of controlling the process [5].

2.4. Supervisory Control Schemes

Figure 1 shows the various schemes for the supervisory control systems. In this Figure, PID is an example of the conventional control scheme, while fuzzy refers to the supervisory control system. Often the conventional loops represent an existing control scheme, which has been controlling the process before installation of the supervisory control system [5].

Figure 2-1 Fuzzy Supervisory Control System (FSCS) Configurations