SIMULATION MODEL FOR CENTER PIVOT IRRIGATION SYSTEM MANAGEMENT

By

YOUSRIA ATEF ABDELHAMEED AHMED

B.Sc., Agricultural Engineering, Ain Shams University, 2008

A thesis submitted in partial fulfillment

of

the requirements for the degree of

MASTER OF SCIENCE

in

Agricultural Science (On Farm Irrigation and Drainage Engineering)

> Department of Agricultural Engineering Faculty of Agriculture Ain Shams University

> > 2014

Approval Sheet

SIMULATION MODEL FOR CENTER PIVOT IRRIGATION SYSTEM MANAGEMENT

By

YOUSRIA ATEF ABDELHAMEED AHMED

B.Sc., Agricultural Engineering, Ain Shams University, 2008

This thesis for M.Sc. degree has been approved by:

Dr. Gamal Hassan El-Sayed		
Emeritus Chief Researcher, Agricultural Engineering Research		
Institute, Agriculture Research Centre		
Dr. Ahmed Abou El-Hassan Abdel-Aziz Prof. of Agricultural Engineering, Faculty of Agriculture, Ain Shams University		
Dr. Abdel-Ghany Mohamed El-Gindy		
Prof. Emeritus of Agricultural Engineering, Faculty of Agriculture,		
Ain Shams University		

Date of Examination: 14 / 8 / 2014

SIMULATION MODEL FOR CENTER PIVOT IRRIGATION SYSTEM MANAGEMENT

By

YOUSRIA ATEF ABDELHAMEED AHMED

B.Sc., Agricultural Engineering, Ain Shams University, 2008

Under the supervision of:

Dr. Abdel-Ghany Mohamed El-Gindy

Prof. Emeritus of Agric. Eng., Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Yasser E. Arafa

Associate Professor of Agric. Eng., Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University

Dr. Essam El-Din Wasif

Chief Researcher, Agricultural Engineering Research Institute, Agriculture Research Centre

ABSTRACT

Yousria Atef Abdelhameed Ahmed: Simulation Model for Center Pivot Irrigation System Management. Unpublished M. Sc. Thesis, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University, 2014.

Center-pivot sprinkler irrigation became very popular in Egypt. The center pivot irrigation management model (CPIM) has been developed with the objective of design new system or changes in system in operation. The CPIM model is based on crop type, weather data, and soil characteristics. The software consists of a simulation package developed in C# and data base in Microsoft Excel 2010. The model comprises five sub-models for: (a) main sub-model; (b) data entry sub-model; (c) weather sub-model; (d) irrigation sub-model; and (e) results sub-model. The most important simulation outputs of the CPIM model include nozzle flow rate (m³/h), application rate (mm/h), and throw diameter (m). These outputs (outputs of 9 scenarios) were compared with observed/manufactured data for the calibration and validation of the model.

Results of this comparison show that differences in model accuracy owing to different variables affecting design and management of the center pivot were not significant. The relationships between the observed/manufactured and simulated results have a good correlation with high value of coefficient of determination and the best models are as follows:

1. Nozzle flow rate, m³/h: is in scenario 5 with $R^2 = 0.967$ and explained by an exponential model: $Q_{SIM} = 0.1067e^{4.1131} (Q_{Obs})^2$.

Where:

Q SIM : Simulated nozzle flow rate

Q_{Obs}: Observed nozzle flow rate

2. Application rate, m^m/h: is in all scenarios with a very high R² and explained by a linear model.

3. Throw diameter, m: is in scenario 1 with $R^2 = 0.942$ and explained by a power model: Dw _{SIM} = 3.9064 (Dw _{MFD})^{0.4361}.

Where:

Dw $_{\mbox{SIM}}$: Simulated throw diameter

Dw MFD: Manufactured throw diameter

The CPIM simulation model accuracy was very high and perfectly mimic the real world for nozzle flow rate and application rate, whereas, the accuracy of the model was good for the throw diameter. Therefore, results of model evaluation confirm the accuracy and robustness of CPIM for simulation of center pivot variables under real field conditions. Finally, it is recommended that using the model as a kernel and useful tool for center pivot irrigation management and design that should be subjected for further development to provide a good tool for center pivot design and management.

Key Words: Simulation; Model; Validation; Verification; Center pivot; Application rate; Nozzle flow rate; Throw diameter.

ACKNOWLEDGEMENT

All Praise and thanks be to **ALLAH**, the most merciful for directing me to the right way and provides me all I have.

I would like to express my deep appreciation and gratitude to **Prof. Dr. Abdel-Ghany Mohamed El-Gindy,** Professor Emeritus of Agricultural Engineering, Faculty of Agriculture, Ain Shams University, for suggesting the problem of study and for his kindly supervision throughout this work. The author is grateful for his valuable discussions, suggestions and helpful criticism, which helped him to finalize this work.

The author wishes to express his sincere gratitude and appreciation to **Dr. Yasser E. Arafa**, Associate Professor of Agricultural Engineering, Faculty of Agriculture, Ain Shams University, for supervision, problem suggestion, continuous encouragement and valuable advices throughout this work, kind help and for reviewing the manuscript.

The author wishes to express his sincere gratitude and appreciation to **Prof. Dr. Essam El-Din Wasif**, Chief Researcher of Agricultural Engineering, and Director of Agricultural Engineering Research Institute, for his kind supervision, continuous encouragement and valuable advices throughout this work.

Special thanks to all staff members of Agricultural Engineering Department, Faculty of Agriculture, Ain Shams University, and all staff members of Agricultural Engineering Research Institute, Agricultural Research Centre for their kind help throughout this work of study.

Finally, deepest appreciations are going towards my family for their understanding, patience and loving encouragement.

CONTENTS

No.		Page
	LIST OF TABLES	III
	LIST OF FIGURES	IV
	LIST OF ABBREVIATIONS	VI
1-	INTRODUCTION	1
2-	REVIEW OF LITERATURES	3
2-1	Irrigation water management	3
2-2	Center pivot irrigation system	4
2-2-1	History of center pivot	4
2-2-2	Component of center pivot	5
2-2-3	Factors affecting water distribution under pivot system	6
2-2-4	Design standards of center pivot irrigation system	8
2-2-5	Center pivot hydraulic concepts	10
2-3	Simulation model therapy	10
2-3-1	Definition of the simulation	10
2-3-2	Simulation model verification and validation	14
2-3-3	Advantages/Disadvantages of using simulation	17
2-4	Simulation model applications in irrigation	17
2-5	Simulation model applications in center pivot	19
3	MATERIALS AND METHODS	22
3-1	Center Pivot Irrigation Model (CPIM)	22
3-1-1	Model conceptualization of CPIM	22
3-1-2	CPIM model development and description	24
3-1-2-1	Main submodel	24
3-1-2-2	Data entry submodel	26
3-1-2-3	Weather submodel	29
3-1-2-4	Irrigation submodel	29
А.	Crop water requirements	30
I.	Crop evapotranspiration	30
II.	Net irrigation depth	32

III.	Irrigation requirement and intervals	33
B.	Center pivot design and management module	33
I.	Center pivot system capacity	33
II.	Center pivot hydraulics analysis	33
III.	Sprinkler application rate	35
3-1-2-5	Result submodel	35
3-2	Computer programming	35
3-3	Model verification and validation	36
3-4	Data analysis	38
4	RESULTS AND DISCUSSION	40
4-1	CPIM model output analysis	40
4-2	Characterization analysis of CPIM outputs	43
4-3	Model calibration and robustness	43
4-3-1	Nozzle flow rate	45
4-3-2	Application rate	46
4-3-3	Throw diameter	47
4-3-4	The goodness CPIM model	49
5-	SUMMARY	58
6	REFERENCES	60
7	APPENDIX	68
8	ARABIC SUMMARY	

LIST OF TABLES

No.		Page
1	Verification assessment classifications and descriptions	16
2	Five basic submodels of the CPIM	23
3	Monthly mean data of evapotranspiration for three stations	30
4	Crop coefficient (Kc), growth period (G), growing season length	31
	(GS) and root zone (D) of some cultivated plants in Egypt	51
	Soil textural groupings associated to field capacity (FC, %),	
5	Permanent wilting point (PWP, %), Specific Gravity (SG, %)	32
	and Soil depletion (SD, %).	
6	Simulation boundary conditions of studied variables for different	39
6	scenarios	39
7	Summary of normality test for nozzle flow rate (m3/h),	44
7	application rate (mm/h), and throw diameter (m)	44
	Summary of descriptive statistical analysis and multiple	
8	comparisons between means for nozzle flow rate (m3/h),	48
	application rate (mm/h), and throw diameter (m)	
	Regression analysis results of observed/manufactured and	
9	simulated for nozzle flow rate (m ³ /h), application rate (mm/h)	50
	and throw diameter (m).	
	Reference Evapotranspiration (ETo) based on penman-montieth	
A-1	equation for Al Qalyubiyah (retrieved from Central Laboratory	68
	for Agricultural Climate).	
	Reference Evapotranspiration (ETo) based on penman-montieth	
A-2	equation for Menia (retrieved from Central Laboratory for	75
	Agricultural Climate).	
	Reference Evapotranspiration (ETo) based on penman-montieth	
A-3	equation for Ismailia (retrieved from Central Laboratory for	82
	Agricultural Climate).	

LIST OF FIGURES

No.		Page	
1	Center pivot irrigation system	5	
2	A seven-step approach for conducting a successful simulation study		
3	General overview of sequential process used in the CPIM development	23	
4	General view of the CPIM interface	25	
5	Research team of the CPIM model	25	
6	Introduction of the CPIM model	26	
7	CPIM data input screen of the field description area	27	
8	CPIM data input screen of the water source	27	
9	CPIM data input screen of the climate	28	
10	CPIM data input screen of the soil type	28	
11	CPIM data input screen of the crop type	29	
12	Sample of CPIM model program coding	36	
13	CPIM data output screen	41	
14	CPIM model results for scenario 1	42	
15	CPIM model result for center pivot layout	42	
16	(A) Mean nozzle flow rate for different simulated scenarios and observed data, (B) mean application rate for different scenarios and manufactured data; and (C) mean throw diameter for different scenarios and manufactured data.	51	
17	Nozzle flow rate observations and model simulations along radial line for center pivot irrigation system. Simulated nozzle flow rate is presented for three different span lengths (30, 40 and 50 m).	52	
18	Water application rate manufacturing specifications and model simulations along radial line for center pivot irrigation system. Simulated water application rate is presented for three different span lengths (30, 40 and 50 m).	53	

19	Sprinkler's throw diameter manufacturing specifications and model simulations along radial line for center pivot irrigation system. Simulated throw diameter is presented for three different span lengths (30, 40 and 50 m).	54
20	Observed vs. simulated nozzle flow rate for three center pivot span lengths (30, 40 and 50 m).	55
21	Manufactured vs. simulated application rate for three center pivot span lengths (30, 40 and 50 m).	56
22	Manufactured vs. simulated throw diameter for three center pivot span lengths (30, 40 and 50 m).	57
B-1	CPIM model results for scenario 2	89
B-2	CPIM model results for scenario 3	89
B-3	CPIM model results for scenario 4	90
B-4	CPIM model results for scenario 5	90
B-5	CPIM model results for scenario 6	91
B-6	CPIM model results for scenario 7	91
B-7	CPIM model results for scenario 8	92
B-8	CPIM model results for scenario 9	92

LIST OF ABBREVIATIONS

Abbreviation	Definition
А	Total irrigated area
ASAE	American Society of Agricultural Engineers
С	Roughness coefficient
CUC	Christiansen uniformity coefficient
CUD	Christiansen uniformity distribution
D	Root zone depth
D	Pipe inside diameter
d _{sp}	Nozzle size
D_{w}	Sprinkler throw diameter
Dw MFD	Manufactured throw diameter
Dw _{SIM}	Simulated throw diameter
Ea	Efficiency of the irrigation system
ET _c	Crop evapotranspiration
ETo	Reference evapotranspiration
f	Outlet friction coefficient
FC	Field capacity
H _e	Pressure head required in the end of the sprinkler line
\mathbf{H}_{f}	Friction head losses
H_{r}	Height of Sprinkler
H_{rg}	Head losses in pressure regulator
H_{sp}	Sprinklers operating pressure head
$\mathrm{H_{v}}$	Operating pressure head in the pivot point
Hz	Height difference between pivot and the end of lateral
$\mathbf{I}_{\mathbf{a}}$	Irrigation requirement
$\mathbf{I}_{\mathbf{a}}$	Available solar energy
In	Net irrigation depth
Κ	Conversion factor
K_{c}	Crop coefficient
K _{cb}	Basal crop coefficient

K _e	Soil evaporation coefficient
PWP	Permanent wilting point
Q obs	Observed nozzle flow rate
Q SIM	Simulated nozzle flow rate
Qs	Center pivot System capacity
Q_{sp}	Nozzle discharge
R	Pipe length
\mathbb{R}^2	Determination coefficient
R _a	Sprinkler application rate
Ra _{MFD}	Manufactured application rate
Ra _{SIM}	Simulated application rate
r _{sp}	Radius at sprinkler
S.E	Standard error
SD	Soil depletion
SG	Specific Gravity
$\mathbf{S}_{\mathbf{s}}$	Distance between sprinklers
Т	Operating time
T_i	Irrigation intervals

I. INTRODUCTION

Over the past decade, many countries around the world have witnessed a growing scarcity and competition for water among different users (domestic, municipal, industrial, and agricultural purposes). Therefore, the increasing of water demands can be met either through the development of new water resources or by using the existing resources more efficiently. In Egypt, the development of new water resources is not economically viable and faces political problems and strict environmental resistance. In addition to the presence of a close connection with energy that is also a valuable resource.

Agriculture is a major user of freshwater on a global basis and contributes to water pollution from excess nutrients, pesticides and other pollutants. The estimated average of the fresh water withdrawn from rivers and groundwater is 80% for producing food and other agricultural activities. Conjointly, an undetermined amount of water required for irrigation and mal water management are putting stress on groundwater reservoirs. For the previous mentioned reasons, the situation is worrisome and calls for greater efforts in sustainable management of water in agriculture and application of new technologies in irrigation which, in turn, will add more value to agricultural production, environmental preservation, and social benefits of water systems.

Centre pivot irrigation system, as a promising modern and precision irrigation system, can help in increasing the efficiency of existing water resources and reducing the water pumping energy consumption. Additionally, center pivot is not dependent on the surface topography in a field to distribute water; unlike previous forms of gravitational irrigation systems which require a minimum slope and are dependent on the slope of the land. Due to these features that distinguish the center pivot irrigation system and the lack of research on its water management are leading to make further research on it.

Generally, a model intended for a simulation study is a mathematical model developed with the help of simulation software. Yousria A. Abedelhamee, M.Sc., 2014

INTRODUCTION

Several simulation models have been developed to study the flow processes involved during an irrigation event in sprinkler irrigation to improve the design and operation of these systems. On the contrary, there is a lack of information about the center pivot simulation models.

Therefore, the general objective of this research is to develop a simulation-decision-support model for center pivot irrigation system aimed at increasing the usability of this technology to improve decision-making capabilities. Specifically, the research objectives are:

- 1. Develop a robust, reliable simulation model for center pivot irrigation management for a decision support system under optimization and systematic response evaluation of different engineering factors affecting the center pivot irrigation management.
- 2. Develop a computer simulation program for center pivot management as a scalable platform in the future to combine the components developed in the simulation model with database facilities and a graphical user interface.
- 3. Investigate the capability of the simulation program to mimic the real world, and therefore, obtaining reliable and trustable results for decision support.