Current Status of the Implication of the Clinical Practice Pattern in Hemodialysis Prescription in Regular Hemodialysis Patients in Egypt – Cairo - Sector (C)

Chesis

Submitted for partial fulfillment of Master Degree in Internal Medicine

By Abdallah Abdelkader Atia

M.B.B.CH. – Ain Shams University

Under Supervision of

Dr. Khaled Hussein Abou-Seif

Professor of Internal Medicine and Nephrology Faculty of Medicine – Ain Shams University

Dr. Haitham Azzat Abd El-Aziz

Assistant Professor of Internal Medicine and Nephrology Faculty of Medicine-Ain Shams University

> Faculty of Medicine Ain Shams University 2016

First and foremost thanks to ALLAH, the Most Merciful.

I wish to express my deep appreciation and sincere gratitude to **Prof. Dr. Khaled Hussein Abou-Seif,** Professor of Internal Medicine and Nephrology, Faculty of Medicine – Ain Shams University, for his close supervision, valuable instructions, continuous help, patience, advices and guidance. he has generously devoted much of his time and effort for planning and supervision of this study. It was a great honor to me to work under his direct supervision.

I wish to express my great thanks and gratitude to Assist. Prof. Haitham Azzat Abd El-Aziz, Assistant Professor of Internal Medicine and Nephrology, Faculty of Medicine-Ain Shams University, for his kind supervision, indispensable advice and great help in this work.

Last and not least, I want to thank all my family, my fiancee, my colleagues,, for their valuable help and support.

Finally I would present all my appreciations to my patients without them, this work could not have been completed.

Abdallah Abdelkader Atia

List of Contents

Title	Page No.
Introduction	1
Aim of the work	3
Review of Literature	
Hemodialysis Prescription	4
Hemodialysis associated comorbidities	
Guidelines For Kidney Diseases	
Hemodialysis in Egypt	45
Patients and Methods	49
Results	54
Discussion	
Summary	
Conclusion	
Recommendations	
References	
Arabic Summary	

List of Tables

Table No.TitleParallel	
Table (1):	Elements of Hemodialysis Prescription
Table (2):	Gender and age distribution in the study population
Table (3):	Different causes of ESRD in the study population
Table (4):	Different comorbidities in the study population
Table (5):	Work status in the study population
Table (6):	Dependency status in the study population
Table (7):	Frequency of HD sessions/week in the study population
Table (8):	Duration of HD session in the study population
Table (9):	Sponsoring status in the study population
Table (10):	Type of vascular access in the study population
Table (11):	Frequency of access failure in the study population
Table (12):	The levels of Hemoglobin, MCV, Iron study during the last 6
	months covered by the study
Table (13):	Hemoglobin category in the study population
Table (14):	Ferritin levels in the study population
Table (15):	TSAT category in the study population
Table (16):	History of blood transfusion in the study population
Table (17):	Different types of ESA used by the study population
Table (18):	History of iron injection in the study population
Table (19):	History of vitamines use in the study population
Table (20):	The levels of Calcium, phosphorus and PTH during the last 6
	months covered by the study
Table (21):	Calcium levels in the study population
Table (22):	Phosphorus level in the study population
Table (23):	PTH levels in the study population
Table (24):	Calcium phosphorus product level in the study population
Table (25):	Different types of phosphorus binders used by the study population
Table (26):	Types of complications during HD session in the study
Table (20).	population
Table (27):	Viral status in the study population
Table (28):	Isolation of HcV +ve patients & HCV-ve patients
Table (29):	Criteria of dialyzer used in the study population
Table (30):	Criteria of dialysate used in the study population

List of Figures

Figure No. 7	`itle	Page
Fig. (1): Mechanisms of solutes removal in hen	nodialysis	8
Figure (2): Comparison of urea clearance rathemodialyzers		
Figure (3): Water permeability of a membrane an hemodialysis		
Figure (4): Pathways of thrombogenesis in extra	acorporeal circuits	19
Figure (5): The development of clinical practice	e guidelines	35
Figure (6): Gender distribution in the study pop	ulation	54
Fig. (7): Different causes of ESRD in the study	population	55
Figure (8): Different comorbidities in the study	population	56
Figure (9): Work status in the study population.		57
Figure (10): Dependancy status in the study pop	pulation	58
Figure (11): Frequency of HD sessions/week in	the study population	59
Figure (12): Duration of HD session in the stud	y population	60
Figure (13): Sponsoring status in the study population	ılation	61
Figure (14): Type of vascular access in the stud	y population	62
Figure (15): Frequency of access failure in the s	study population	63
Figure (16): Hemoglobin category in the study	population	65
Figure (17): Ferritin levels in the study populati	on	66
Figure (18): TSAT Cateogry in the study popul	ation	67
Figure (19): History of blood transfusion in the	study Population	68
Figure (20): Different types of ESA used by the	study population	69
Figure (21): History of iron injection in the stud	y population	70
Figure (22): History of vitamins use in the study	population	71
Figure (23): Calcium levels in the study popula	tion	73
Figure (24): Phosphorus level in the study popul	lation	74
Figure (25): PTH levels in the study population		75
Figure (26): Calcium phosphorus product level	in the study population	76
Figure (27): Different types of phosphorus bind	ers used by the study population	77
Figure (28): Types of complications during HD	session in the study population	78
Figure (29): Viral status in the study population		79
Figure (30): Criteria of dialyzer used in the stud	y population	81
Figure (31): Criteria of dialysate used in the stud	dy population	82

LIST OF ABBREVIATIONS

Full term	
Arteriovenous access	
Blood flow rate	
Body mass index	
Blood pressure	
Blood Urea Nitrogen	
continuous ambulatory peritoneal dialysis	
Cardiopulmonary recirculation	
Chronic kideny disease	
US Centers for Medicare and Medicaid Services	
clinical practice guidelines	
C- reactive protein	
Chronic venous cathter	
Cardiovascular disease	
Dialysate flow rate	
Diabetus mellitus	
Dialysis outcome and practice pattern study	
The European Renal Association-European Dialysis and Transplantation association	
End stage renal disease	
Glomerular filtration rate	
Grades of recommendation assessment, Development, and evaluation	
Hepatitis B Virus	
Hepatitis C Virus	

LIST OF ABBREVIATIONS (Cont....)

Abbrev.	Full term
HD	Hemodialysis
HDF	Hemodiafiltration
HF	Hemofiltration
HTN	Hypertension
IPD	Intermittent peritoneal dialysis
K/DOQI	Kidney Disease Outcome Quality Initiative
KDIGO	Kidney disease improving global outcomes
KOA	The mass transfer area coefficient
MIA	Malnutrition -Inflammation atherosclerosis
	(MIA) Syndrome
MICS	'malnutrition-inflammation complex
	syndrome'
МОН	Ministry of health
NKF	National Kidney Foundation
PEM	Protein energy malnutrition
QIP	Qulaity improvement programs
RRT	Renal replacement therapy
SRI	Solute removal index
TMP	Transmembrane pressure
ΤΝΓ α	Tumor necrosis factor
UF	Ultrafiltration
UKM	Urea kinetic modeling
UpostHD	Urea posthemodialysis
UpreHD	Urea prehemodialysis
URR	Urea reduction ratio
β2M	Beta 2 microglobulin
(K _{uf})	The ultrafiltration coefficient

Abstract

Introduction: Studies examining the link between research evidence and clinical practice have consistently shown gaps between the evidence and current practice . Aim of the Work: To study the pattern of current clinical practice in hemodialysis prescription in regular hemodialysis patients in Egypt and to compare this pattern with standard international guidelines in hemodialysis prescription, stressing on anemia, bone disease management and adequacy of dialysis. Patients and methods: A retrospective study was carried out including all 339 Patients. **Results:** of this study demonstrated that there were many causes for ESRD in the study population, where HTN 36.1%, DM 18%, and in 11.8% the cause was unknown, this results agrees with most of the studies where HTN & DM were the main causes of renal failure. Conclusion: The mean value of HD period is 4.7 (\pm 3.9) years. The mean value of patients dry weight was 70.7 (± 7) Kg. **Recommendations:** The developed practice guidelines should be reviewed and updated, if needed, yearly.

Key words: anemia, end-stage renal failure (ESRD),

INTRODUCTION

Studies examining the link between research evidence and clinical practice have consistently shown gaps between the evidence and current practice. Some studies in the United States suggest that 30%-40% of patients do not receive evidence-based care, while in 20% of patients care may be not needed or potentially harmful. However, relatively little information exists about how to apply evidence in clinical practice, and data on the effect of evidence-based guidelines on knowledge uptake, process of care or patient outcomes is limited (*Locatelli et al.*, 2004).

Appropriately then, the care of dialysis patients has been the prime focus of nephrology, particularly after the widespread availability of maintenance dialysis when it became evident that mortality of dialyzed patients was high and their quality of life far from adequate (*Eknoyan et al., 2002*).

Guidelines practiced on anemia and actual practices are much different with different places and patients according to treatment. Moreover, in individual countries and individual units within countries local circumstances relating to economic conditions; organization of health care delivery or even legal constraints may render the immediate implementation of best practice guidelines difficult or impossible. Nevertheless, they provide a goal against which progress can be measured. (Locatelli et al., 2004)

Compliance with clinical guidelines is an important indicator of quality and efficacy of patient care, at the same time their adaptation in clinical practice may be initiated by numerous factors including; clinical experts, patient performance, constrains of public health policies, community standard, budgetary limitation and methods of feeding back information concerning current practice. (*Cameron, 1999*)

End-stage renal disease (ESRD) is one of the main health problems in Egypt. Currently, hemodialysis represents the main mode for treatment of chronic kidney disease stage 5 (CKD5), previously called ESRD or chronic renal failure.(*Afifi, 1999*)

Although hemodialysis is often used for treatment of ESRD, no practice guidelines are available in Egypt. Healthcare facilities are seeking nowadays to develop practice guidelines for the sake of improving healthcare services. (*Ministry of Health and Population, 1999*).

AIM OF THE WORK

To study the pattern of current clinical practice in hemodialysis prescription in regular hemodialysis patients in Egypt and to compare this pattern with standard international guidelines in hemodialysis prescription, stressing on anemia, bone disease management and adequacy of dialysis.

HEMODIALYSIS PRESCRIPTION

Uremia is a quite complex syndrome encompassing a metabolic disorders and accumulation of various sized uremic toxins (*Vanholder et al., 2003*); that it would be impossible for intermittent renal replacement therapy (RRT) to replace the homeostatic role of the kidneys. Hence, the importance of providing at least adequate dialysis. (*Eknoyan, 2005*)

Eradication of uremic symptoms was supposed to predict good long term results of dialysis-low morbidity and mortality. This approach of assessing adequacy is subjective, requires very careful monitoring of patients, and is time consuming *(Twardowski, 2003)*.

Hemodialysis (HD) therapy has been one of the true success stories in the annals of medical science. Before the availability of this treatment, the diagnosis of kidney failure was a death sentence (*Butman and Nissenson, 2005*).

Unfortunately, despite major advances in the technology of HD and in the management of its complications, the morbidity and mortality of patients on dialysis remain high, at a time that the incidence and prevalence of kidney failure persistently are increasing. Hence, the early and continued concern with the adequacy of dialysis (*Eknoyan, 2005*).

Optimal care of the patient receiving long-term HD requires broad knowledge of the HD technique and appropriate prescription according to patient- and device-dependent variables (*Ikizler and Schulman, 2005*).

Table (1): Elements of Hemodialysis Prescription.

Dialyzer
Time & frequency
Blood flow rate
Dialysate flow rate
Ultrafiltration rate
Dialysate composition
Anticoagulation

(Brenner and Rectors, 2008)

<u>1-Dialyzers</u>

Types of dialyers and its choice

The dialyzers are calssified either according to it's synthetic material into: cellulose, modified cellulose or synthetic polymers Or according to it's hydrokinetics into High-Flux &Low-Flux Dialyzers. All dialyzers in clinical use are of the hollow-fiber type with membranes of cellulose, modified cellulose or synthetic polymers. (*Ronco and Clark, 2005*).

A biocompatible dialysis membrane is one in which minimal reaction occurs between the humoral and cellular components of blood as they come into contact with the surface of the dialyzer (*Hakim*, 1993).

Unsubstituted Cellulosic membranes have the propensity to activate the complement system. This activation of complement is partially responsible for the subsequent activation of neutrophils and other leukocytes, making these membranes bioincompatible (*Chenoweth*, 1984), whereas substituted cellulosic or synthetic membranes have more biocompatible characteristics.(*Ambalavanan et al.*, 1999)

High-flux membranes have ultrafiltration coefficient

 (K_{uf}) values > 12 mL/h/mm Hg, and as high as 80 mL/h/mm Hg. Low-flux membranes have K_{uf} values < 12 mL/h/mm Hg.The K_{uf} is calculated in milliliters of ultrafiltrate per hour per mm Hg (mL/h/mm Hg) of transmembrane pressure (TMP) (*Chelamcharla et al., 2005*)

The efficiency and flux are not related to each other. Thus, high efficiency membranes can be either high flux (large surface area and large pores) or low flux (large surface area but small pores), and low efficiency membranes can also be either low flux or high flux (*Ambalavanan et al., 1999*).