

Faculty of Girls for Arts, Science and Education Mathematics Department

SPIN-TORSION INTERACTION AND GRAVITOMAGNETISM

By

Mona Mahmoud Kamal Mahmoud

B.Sc. in Mathematics (2007) Faculty of Girls for Arts, Science and Education

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE AT FACULTY OF GIRLS, AIN SHAMS UNIVERSITY CAIRO, EGYPT JUNE 2011

C Copyright by Mona Mahmoud Kamal Mahmoud, 2011

Title of the M.Sc. Thesis

SPIN-TORSION INTERACTION AND GRAVITOMAGNETISM

Name of the Candidate **Mona Mahmoud Kamal Mahmoud** B.SC. IN MATHEMATICS (2007) FACULTY OF GIRLS FOR ARTS, SCIENCE AND EDUCATION

Submitted to Faculty of Girls, Ain Shams University

Supervision:

Prof. M. I. Wanas Professor of Relativistic Cosmology Astronomy Department Faculty of Science, Cairo University

M. I. Wanas

Prof. Samia S. Elazab Professor of Applied Mathematics Head of Mathematics Department Faculty of Girls, Ain Shams University

Samia S. Elazab

AIN SHAMS UNIVERSITY FACULTY OF GIRLS DEPARTMENT OF MATHEMATICS

The undersigned hereby certify that they have read and recommend to the Faculty of Girls for Arts, Science and Education for acceptance a thesis entitled "Spin-Torsion Interaction and Gravitomagnetism" by Mona Mahmoud Kamal Mahmoud in partial fulfillment of the requirements for the degree of Master of Science.

Dated: June 2011

Research Supervisors:

M. I. Wanas

Samia S. Elazab

AIN SHAMS UNIVERSITY FACULTY OF GIRLS

Date: June 2011

Author:	Mona Mahi	moud Kamal Mał	imoud			
Title:	Spin-Torsio	n Interaction and	Gravitomagnetism			
Department: Mathematics						
Degree: M.S	c. Convo	ocation: June	Year: 2011			

Permission is herewith granted to Ain Shams University to circulate and to have copied for non-commercial purposes, at its discretion, the above title upon the request of individuals or institutions.

Signature of Author

THE AUTHOR RESERVES OTHER PUBLICATION RIGHTS, AND NEITHER THE THESIS NOR EXTENSIVE EXTRACTS FROM IT MAY BE PRINTED OR OTHERWISE REPRODUCED WITHOUT THE AUTHOR'S WRITTEN PERMISSION.

THE AUTHOR ATTESTS THAT PERMISSION HAS BEEN OBTAINED FOR THE USE OF ANY COPYRIGHTED MATERIAL APPEARING IN THIS THESIS (OTHER THAN BRIEF EXCERPTS REQUIRING ONLY PROPER ACKNOWLEDGEMENT IN SCHOLARLY WRITING) AND THAT ALL SUCH USE IS CLEARLY ACKNOWLEDGED. To My Loving Parents

vi

Table of Contents

Table of	of Contents	vii	
List of	Tables	ix	
List of	Figures	x	
Abstra	nct	xiii	
Summa	ary	$\mathbf{x}\mathbf{v}$	
Acknow	wledgements	xix	
Genera	al Introduction	1	
1 TES	STS OF RELATIVISTIC THEORIES	5	
Part I:	Theoretical Predictions	7	
1.1	Special Relativity Prediction for Time Flow	10	
1.2	General Relativity Predictions for Time Flow		
	1.2.1 Prediction of the effect of the Gravitoelectric C	omponents 13	
	1.2.2 Prediction of the effect of the Gravitomagnetic		
Part II	I: Observational and Experimental Tests	19	
1.3	Observation Testing Relativistic Gravity	20	
	1.3.1 The Advance of perihelion of Mercury	21	
	1.3.2 Bending of Light	22	
	1.3.3 Gravitational Redshift	22	
1.4	Experiments Testing Relativistic Gravity	23	
	1.4.1 Pound-Rebka Experiment	23	
	1.4.2 Hafele-Keating Experiment	25	
	1.4.3 Shapiro Time Delay	31	
	1.4.4 Gravity Probe B	32	
1.5	Discussion	33	
2 GE(OMETRIES FOR APPLICATIONS	35	

vii

Pa	rt I:	Parameterized Absolute Parallelism (PAP)	39			
	2.1	PAP-Linear Connection	40			
	2.2	Tensors of Different Order				
		2.2.1 Third Order Tensors and Vectors	43			
		2.2.2 Second Order Tensors and Scalars	44			
	2.3	Parameterized Curvature and Anti-curvature Tensors	46			
	2.4	The Parameterized W -Tensor(s)	47			
	2.5	The Parameterized Path Equation	48			
	2.6	Special Cases	51			
Pa	rt II	: AP-structure with Finslerian Flavor	53			
	2.7	Basic Structure	55			
		2.7.1 A Non-Linear Connection				
		2.7.2 Linear Connections				
		2.7.3 Tensor Derivatives				
	2.8	Further Relations and d-connections	60			
	2.9	Tensors of Different Orders	62			
		2.9.1 Third Order Tensors and Vectors	62			
		2.9.2 Second Order Tensors and Scalars	63			
	2.10	Curvature, Anti-Curvature and Torsion Tensors	66			
		The W-Tensor(s)	73			
		Discussion				
3	API	PLICATIONS FOR SOME PHYSICAL PHENOMENAE	81			
	3.1	Introduction	82			
	3.2	General Relativity in PAP-Geometry	83			
	3.3	PAP-Structure with Axial Symmetry				
	3.4	Solution of the Field Equations				
	3.5	Solution of the Parameterized Equations of Motion				
	3.6	Reanalysis of Hafele and Keating Experiment				
	3.7	Estimated values and Sensitivity Needed				
	3.8	Discussion				
Ge	General Discussion and Concluding Remarks 117					
Re	eferei	nces	122			
Ar	Arabic Summary		129			

List of Tables

Cable 1.1: GR Predictions 29
Cable 1.2: The measured relativistic time differences 31
Cable 2.1: PAP Second Order World Tensors 45
Cable 2.2: Operators 54
Cable 2.3: Second Order World Tensors 64
Cable 2.4: Second Order contracted curvature Tensors 70
Cable 2.5: Comparison between FAP-, AP-, Finsler and Riemann
geometries

List of Figures

Figure 1.1:	A schematic diagram of a 3-dimensional space around	
	rotating object.	15
Figure 1.2:	On the left hand side, shows the position of the vernal	
	equinox (γ) on the celestial sphere, while the elliptic orbit	
	of a planet appears on right hand side of the figure	21
Figure 1.3:	Pound and Rebka	24
Figure 1.4:	Motion of two flying clocks 3, 4 relative to a surface one 2.	26
Figure 1.5:	Hafele and Keating with their flying clocks	30
Figure 1.6:	GP-B	32
Figure 2.1:	AP and Riemannian geometries as a special cases of the PA	ΛP
	-geometry.	52
Figure 2.2:	Relation between different geometric structures	79

xii

Abstract

The present work is devoted to confrontation between predictions of field theories and the corresponding measurements using experiments and/or observations testing such theories. In particular, it is focused on two predictions, the *gravitomagnetism* and *spin-torsion interaction* on one side and the measurements verifying these phenomenae, on the other side. Geometries more wider than Riemannian geometry, have been used to represent such physical phenomenae. Confrontation between predictions and measurments shows that, the sensitivity of the available equipments are not sufficient to test *spin-torsion* interaction. We suggest a space-based experiment, with a more sensitive equipment, for testing such phenomenae.

Keywords: Rieman-Cartan Geometry, Spin-Torsion Interaction, Gravitomagnetism, Flying Clocks, Tests of Gravity Theories.

xiv

Summary

The thesis contains three chapters, an Arabic summary, eight figures, seven tables and a list of references.

Chapter 1: TESTS OF RELATIVISTIC THEORIES

This chapter consists of two parts. It is devoted to some tests of relativistic theories. Part I discusses how to use theories to calculate theoretical values for a certain phenomena (predictions of the theory). Part II gives a brief account on some observations and experiments, carried out to test theoretical predictions of the theory (experimental measurements). At the end of this chapter we give a discussion about the material given in the two parts. The discussion shows that geometries, more wider than the Riemannian one, are needed to represent certain gravity interactions.

Chapter 2: GEOMETRIES FOR APPLICATIONS

This chapter, also, contains two parts. It is devoted to geometries suggested to represent physical phenomena, that cannot be represented in the context of Riemannian geometry. In Part I of this chapter, a detailed account of the Parameterized Absolute Parallelism (PAP-)geometry, as an appropriate replacement for