The Reflection of Hepatitis B Virus Genotyping on Histopathological Pattern and Clinical Presentation Among Egyptian Patients with Chronic Hepatitis B Infection

Thesis

Submitted for the partial fulfillment of M.D. Degree in Tropical Medicine

By
Sahar Zaghloul Mohammad Maklad
M.B., B.Ch. & M. Sc.

Supervised by

Dr. Ahmad Abd-El-Latif Abou Madyan
Professor of Tropical Medicine
Faculty of Medicine - Cairo University

Dr. Mohamed Abdel Hamid Ahmed
Professor of Microbiology
Faculty of Medicine - Minia University

Dr. Hassan Ahmed Ali El-Garem
Ass. Professor of Tropical Medicine
Faculty of Medicine - Cairo University

Cairo University
2006
Acknowledgement

I was honoured to have Dr. Ahmed Abd-El-Latif Abou Madiyan, Prof. of Tropical Medicine, Cairo University as my supervisor. His great ideas, encouragement and advice were invaluable. His unlimited fatherly support and indispensable directions gave me a great spirit to carry on.

I would like to express my sincere thanks to Dr. Mohamed Abdel Hamid Ahmed, Head and Professor of Microbiology Dep, Minia University who was mainly responsible for all the laboratory part of this study. His support, guidance and continuous help were of great importance. He freely gave time and encouragement which enabled me to finish this work.

I would like to express my utmost thanks to Dr. Hassan Ahmed Ali El-Garem, Assistant Professor of Tropical Medicine, Cairo University for the priceless help and support that he gave. He spent his valuable time and effort reviewing all the work and providing me with endless precious ideas.

I can find no words to thank Dr. Soheir Ismail, Consultant of, Hepatology and Tropical Medicine at National Hepatology and Tropical Medicine Research Institute, Cairo for her valuable and precious help in the data collection of this research. She gave a lot of time and support to solve problems and conduct the clinical part of this work.

My deepest appreciation to the Pathology Department at the National Hepatology and Tropical Medicine Research Institute and the Laboratory Staff at HCP Project who were very cooperative and helpful although the work.
List of contents

Introduction ... 1
Aim of work... 4
Literature Review... 5
 Epidemiology... 5
 Spotlights on the Egyptian situation of HBV.. 14
 Virology... 18
 Genotyping.. 30
 Immunopathogenesis... 58
 Diagnosis.. 81
 Treatment.. 98
Patients & Methods... 122
Results... 131
Discussion... 162
Conclusion.. 179
Recommendations... 180
Summary... 182
References.. 184
Arabic summary...
List of tables

Table (1) Genes and protein of the hepatitis B virus 26
Table (2) Life cycle of the hepatitis B virus 28
Table (3) Characteristic of HBV genotypes 37
Table (4) Advantages and disadvantages of different HBV genotyping methods ... 41
Table (5) Four phases of chronic HBV infection 73
Table (6) Factors affecting prognosis of chronic hepatitis B and compensated cirrhosis .. 74
Table (7) Interpretation of serological markers according to symptoms, transaminases and histological features .. 86
Table (8) Histological activity index ... 93
Table (9) Modified HAI grading: necroinflammatory scores 95
Table (10) Modified staging: architectural changes, fibrosis and cirrhosis 96
Table (11) A glossary of definitions .. 97
Table (12) Comparison of three approved treatment of chronic hepatitis B … 119
Table (13) Recommendations for treatment of chronic hepatitis B 120
Table (14) Different categories in the excluded group 124
Table (15) Comparing age groups between the two study group 131
Table (16) Comparing demographic characteristics between the two studies groups .. 132
Table (17) Comparing different clinical presentations for patients between the studies groups .. 133
Table (18) Estimating the effect of some possible risk factors for HBV infection between the studies groups .. 134
Table (19) Frequency of risk factors for HBV infection in the studies groups ... 135
Table (20) Comparing age and some liver function parameters between the study groups ... 136
Table (38) Demographic characteristics of HBV DNA -ve patients and HAI biopsy results ... 154

Table (39) Relation between different clinical presentations of HBV DNA -ve patients and HAI biopsy results ... 155

Table (40) Relation between risk factors for HBV infection of HBV DNA -ve patients and HAI biopsy results ... 156

Table (41) Age and some liver function parameters of HBV DNA -ve patients and HAI biopsy results .. 157

Table (42) Some liver function parameters of HBV DNA -ve patients and HAI biopsy results ... 158

Table (43) Some blood parameters of HBV DNA -ve patients and HAI biopsy results ... 159

Table (44) Hepatitis B seromarkers of HBV DNA -ve patients and HAI biopsy results ... 160

Table (45) Ultrasonographic findings of liver and spleen of HBV DNA -ve patients and HAI biopsy results ... 161
List of figures

Figure (1) Worldwide prevalence of HBV .. 8

Figure (2) Electron micrograph of hepatitis B virus in plasma (left) and budding of virus particles from hepatocytes ... 19

Figure (3) HBV genome organization and regulatory elements of orthohepadnaviruses .. 21

Figure (4) Structure of hepatitis B viral polymerase 23

Figure (5) Structure of hepatitis B viral HBc and HBe antigens and the C-gene from which they are derived ... 24

Figure (6) Life cycle of HBV .. 29

Figure (7) Dendrogram of HBV genotypes .. 34

Figure (8) Geographic distribution of HBV genotypes worldwide............. 36

Figure (9) LIPA HBV genotyping of (a) genotype A, (b) genotype B, (c) genotype C, and (d) genotype ... 40

Figure (10) Cumulative rates of spontaneous HBeAg seroconversion in Chinese patient with genotype B versus genotype C .. 43

Figure (11) Japanese patients with HCC stratified by age according to presence of genotype B versus genotype C ... 44

Figure (12) Distribution of liver disease among Japanese patients with genotype B versus genotype C ... 45

Figure (13) Increase risk of developing HCC among patients with genotype C versus genotype B ... 46

Figure (14) Cumulative probability of developing concurrent sustained biochemical remission DNA clearance in Spanish patients with genotype A versus genotype D ... 48

Figure (15) Response to IFN alpha therapy in Chinese patients with genotype B versus genotype C ... 52

Figure (16) Proportion of patients with HBeAg loss during Peg IFN alpha-2b therapy according to HBV genotype ... 54

Figure (17) Natural course of HBV infection ... 72

Figure (18) Incidence (cases per 100,000 per year) of hepatocellular carcinoma
according to the stage of liver disease in patients with hepatitis B 76

Figure (19) Landmarks in hepatitis B.. 98

Figure (20) Action of IFN ... 100

Figure (21) Structure of Adefovir Dipivoxil ... 105

Figure (22) Structure of some antiviral drugs 106

Figure (23) Distribution of patients according to their HBsAg status 122

Figure (24) Recruitment of patients according to different inclusion/exclusion criteria .. 129
List of Abbreviations

AIDS Acquired Immune Deficiency Syndrome
BP Barber Protein
°C Degree Centigrade
CCP Critical control point
CAST Council for Agriculture Science and Technology
CDC Centers for Disease Control & Prevention
CFU Colony Forming Unit
CMIR Cell Mediated Immune Response
CT Cholera Toxin
E coli Escheretia coli
EIA Enzyme Immuno-Assay
ELISA Enzyme Linked Immune Sorbent Assay
FAO Food and Agriculture Organization
FDA Food and Drug Administration
GIT Gastro-Intestinal Tract
HACCP Hazard analysis critical control point
Ig A Immunoglobulin A
Ig G Immunoglobulin G
Ig M Immunoglobulin M
LIS Lysine Iron Sugar
LMI Lymphocyte Migration Inhibition
LPS Lipopolysaccharide
LT Heat Labile enterotoxin
2-ME 2-mercaptoethanol
MIO Motility Indole Ornithine
NTS Non Typhoidal Salmonella
OMPS Outer membrane proteins
OR Odds Ratio
S Ig A Salmonella Immunoglobulin A
TAB typhi, paratyphi A & paratyphi B
TSI Triple Sugar Iron agar
UK United Kingdom
Vi Virulence
VICPS Vi Capsular Polysaccharide Vaccine
WHO World Health Organization
WTA World Trade Organization
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADCC</td>
<td>Antibody Mediated Cellular Cytotoxicity</td>
</tr>
<tr>
<td>ADV</td>
<td>Adefovir Dipivoxil</td>
</tr>
<tr>
<td>AHF</td>
<td>Acute hepatic Failure</td>
</tr>
<tr>
<td>ALT</td>
<td>Alanine Aminotransferase</td>
</tr>
<tr>
<td>AST</td>
<td>Aspartate Amino transferase</td>
</tr>
<tr>
<td>AVH</td>
<td>Acute Viral Hepatitis</td>
</tr>
<tr>
<td>BCP</td>
<td>Basal Core promoter Mutations</td>
</tr>
<tr>
<td>cccDNA</td>
<td>Covalently Closed Circular DNA</td>
</tr>
<tr>
<td>CHB</td>
<td>Chronic Hepatitis B</td>
</tr>
<tr>
<td>CTL</td>
<td>Cytotoxic T Lymphocytes</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxy Ribonucleic Acid</td>
</tr>
<tr>
<td>DNA Pol</td>
<td>DNA Polymerase</td>
</tr>
<tr>
<td>EASL</td>
<td>European Association for the Study of the Liver</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzym Linked Immunosorbent Assays</td>
</tr>
<tr>
<td>HBeAg,Ab</td>
<td>Hepatitis B e antigen and antibody</td>
</tr>
<tr>
<td>HBeAg</td>
<td>Hepatitis B surface Antigen</td>
</tr>
<tr>
<td>HBCAb</td>
<td>Hepatitis B core Antibody</td>
</tr>
<tr>
<td>HBCAb Igm</td>
<td>Hepatitis B antibody Immunoglobulin M</td>
</tr>
<tr>
<td>HBIG</td>
<td>Hepatitis B Immunoglobulines</td>
</tr>
<tr>
<td>HBsAb</td>
<td>Hepatitis B surface Antibody</td>
</tr>
<tr>
<td>HBV</td>
<td>Hepatitis B virus</td>
</tr>
<tr>
<td>HCC</td>
<td>Hepatocellular carcinoma</td>
</tr>
<tr>
<td>HCV</td>
<td>Hepatitis C virus</td>
</tr>
<tr>
<td>HCW</td>
<td>Health Care workers</td>
</tr>
<tr>
<td>HIV</td>
<td>Human Immunodeficiency Virus</td>
</tr>
<tr>
<td>HLA</td>
<td>Human Leucocyte Antigen</td>
</tr>
<tr>
<td>IFN Alpha</td>
<td>Interferon Alpha</td>
</tr>
<tr>
<td>IVUD</td>
<td>Intravenous drug users</td>
</tr>
<tr>
<td>Line probe Assay</td>
<td>Line Probe Assay</td>
</tr>
<tr>
<td>NIH</td>
<td>National Institute of Health</td>
</tr>
<tr>
<td>NK</td>
<td>Natural Killer Cells</td>
</tr>
<tr>
<td>OLT</td>
<td>Orthotopic Liver Transplantation</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>Peg IFN Alpha</td>
<td>Pegylated Interferon Alpha</td>
</tr>
<tr>
<td>RFLP</td>
<td>Restriction Fragment Length Polymorphism</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumour Necrosis Factor</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
Introduction

Since its first description more than 30 years ago, infection with hepatitis B virus (HBV) has been recognized as a major cause of chronic liver disease, liver cirrhosis and hepatocellular carcinoma world wide, with peak prevalence in the Far East and African regions. (Zoulim. 2004)

Despite the development and use of highly protective HBV vaccines in the last two decades, still the WHO estimates that over 2 billions of the world population have been infected with HBV and between 350- 400 million individuals are currently chronic carriers of the virus, with at least 1 million deaths occurring annually as a direct consequence of the infection. (Maddery et al., 2001)

HBV belongs to the hepadnaviridae family, a tiny extraordinary DNA virus that posses the smallest genome of all human viruses (Wang et al., 2002)

Mode of transmission of the disease is mainly parenteral through contaminated unscreened blood transfusion and often by intimate sexual contact (Mc Mahon et al., 2001). Passage of the virus from an infected mother ,the so called vertical transmission, also plays a role in widespread HBV. The chance increases in acute rather than chronic carrier-mothers. (Chang, 2000). Dialysis machines, dental procedures, and un-sterile surgical instruments are important routes of HBV transmission.(Wang et al., 2002).

Clinically the disease could present as either acute or chronic hepatitis. Acute hepatitis B usually presents by an increase in ALT and AST levels and is defined by detectable HBsAg, HBcAb (Igm)or both.(Decker.1998). Duration of the disease is variable, and improvement
Introduction & Aim of the Work

could be monitored by seroconversion of HBeAg to HBeAb and complete cure by seroconversion of HBsAg to HBsAb (Furusyo et al., 1999). Complete clinical recovery occurs in 90 – 95 % of the horizontally transmitted cases, unlike vertically transmitted ones that retain the infection and become chronic in 70 -80 % of cases (Furusyo et al., 1999).

Chronic infection is characterized by the persistence of serum HBsAg and HBeAb. HBV DNA may remain detectable in serum or liver using polymerase chain reaction (PCR) based tests following the disappearance of HBsAg in serum, the clinical significance of the persistence of very low levels of HBV DNA is still controversial (Brechot et al., 2001).

Approximately 10% of adults and about 90% of neonates contracting HBV will not clear the HBsAg from serum within 6 months and become chronic carriers (McMahon et al., 2001) they mostly have normal liver profile and on the level of liver biopsy may present by non specific minimal abnormalities through to chronic hepatitis and cirrhosis (Thursz, 2001).

However the clinical course that HBV leads is quite variable, from completely asymptomatic disease through to mild constitutional manifestations and, finally complications as liver cell failure, ascites, esophageal varices, encephalopathy and / or hepatocellular carcinoma (Thakur et al., 2002), which suggests the presence of certain viral factors behind those variations.

The recent application of molecular technology for gene amplification and sequencing to the study of these viruses, especially those that cause persistent infections, has unraveled their significant heterogeneity and their potential for rapid evolution (Esteban, 1999).
Based on an 8% nucleotide divergence of HBV genome, HBV is classified into seven genotypes: A to G which tend to be distributed geographically. (Norder et al., 1992) and (Stuyver et al., 2000). An eighth genotype, designated H, was reported from Central America (Arauz-Ruiz et al., 2002). Four fundamental antigenic subtypes and five other subtypes are antigenically defined, based on amino acid substitutions in the 5 protein (Kato et al., 2001).

The clinicopathological outcome of the disease was found to be closely related to the subtype backbone (Chan et al., 2002)a.

Genotype A was found to be associated with less severe liver disease than genotype D. Moreover, genotype D was also more prevalent than genotype A among patients with Child-Pugh B or C cirrhosis. (Thakur et al., 2002).

. In addition, genotype B was found to be associated with severe icteric flares (Chan et al., 2002)b.

Nevertheless, HBV genotypes may be related to the development of HCC (Kao et al., 2000)b and may also affect the response of patients to lamuvidine therapy either in chronic HBV cases or after liver transplantation (Ben Ari et al., 2003).