AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING CIVIL ENGINEERING DEPARTMENT PUBLIC WORKS SECTION

WATER LOSSES MANAGEMENT USING ON-LINE MONITORING, GIS, AND MODELLING WITH WATERCAD

A Thesis submitted to the Faculty of Engineering Ain Shams University For the Fulfillment of M.Sc. Degree in Civil Engineering

By

Ahmed Hassan Mohammed Yehia AbdulFattah Water Supply Engineer

Under the supervision of

Prof. Dr MAHMOUD ABDEL AZEEM
Professor of Sanitary Engineering, Ain Shams University
Prof. Dr. HODA SOUSSA
Professor of Water Resources Engineering, Ain Shams University
Prof. Dr. MOHAMMED HASSAN MOHAMMED
Professor of Sanitary and Environmental Engineering
The Housing and Building National Research Center, HBRC
CEO of the Egyptian Water and Wastewater Regulatory Agency, EWRA

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING CIVIL ENGINEERING DEPARTMENT PUBLIC WORKS SECTION

WATER LOSSES MANAGEMENT USING ON-LINE MONITORING, GIS, AND MODELLING WITH WATERCAD

A Thesis submitted to the Faculty of Engineering Ain Shams University For the Fulfillment of M.Sc. Degree in Civil Engineering

By

Ahmed Hassan Mohammed Yehia AbdulFattah Project Engineer at Saudi Consult – kingdom Of Saudi Arabia

THESIS APPROVAL

EXAMINERS COMITTEE

SIGNATURE

Prof. Dr HABIB MUHAMMADOGLU Professor of Environmental Engineering

Akdeniz University, Antalya, Turkey

Prof. Dr TAREK ISMAIL

Professor of Sanitary Engineering Ain Shams University, Egypt

Prof. Dr MAHMOUD ABDEL AZEEM

Professor of Sanitary Engineering Ain Shams University, Egypt

STATEMENT

This dissertation is submitted to Ain Shams University, Faculty of Engineering for the degree of M.Sc. in Civil Engineering.

The work included in this thesis was carried out by the author in the department of Public Works, Faculty if Engineering, Ain Shams University, from March 2011 to Dec 2012.

No part of this thesis has been submitted for a degree or a qualification at any other University or Institution.

Signature -----

Name Ahmed Hassan Mohammed Yehia

DEDICATION

I dedicate this work for anyone who might find this work useful or to whom is concerned.

For the people, whom without this work would not have been completed, my mentors Prof Habib Muhammetoglu and Prof Mahmoud Abdel Azeem.

Special thanks for my dear friend Ethem Karadirek and also Cem Çakmak who saved no effort in giving me a hand during my work.

To Prof Hoda Soussa and Prof Mohammed Hassan, whom I have been honored to work with them.

To Prof Bahadir Ali, Dr. Mufeed Batarseh and Dr. Hiek Dickman from DAAD who helped me in gaining the scholarship in Turkey

To Ain Shams University, Akdeniz University, ASAT, HCWW, DAAD and BMZ.

Special thanks to Bentley Company which helped me during the study by providing me with an academic license for WaterCad v8i; I was very happy to have been trained by them as well by Mr. Muhannad Shaweesh.

SPECIAL DEDICATION

To my family that supported me to go on and continue this work all over three years.

To mom and dad and my beloved fiancé.

Abstract

This research was conducted by Ahmed Hassan Mohammed under the title of "WATER LOSSES MANAGEMENT USING ON-LINE MONITORING, GIS AND MODELLING WITH WATERCAD" for obtaining the Master of Science degree from Ain Shams University.

This research has followed the most advanced techniques in water losses management that are being applied in developed countries. Using and integrating information technologies (SCADA, GIS, CIS and Hydraulic Modeling) to achieve water losses reduction. Using Active Leakage Control ALC was very important as well, because it is one of the most important factors that affect physical water losses.

By Appling such methodologies through this area of study in Antalya city and then comparing similar approach with Luxor city, is the core of this study. The results conducted by this research could be taken as a guideline for water utilities to start over their methodologies and immediately follow water losses management strategies which are; dividing network into DMAs, Pressure management, conducting water balance and leakage monitoring strategies.

After all calculating and analysis of data obtained by continuous monitoring is essential to decide the possible and suitable action to sustain the development of the water sector.

List of Abbreviations

AADD	Annual Average Daily Demand
ALC	Active Leakage Control
ALR	Awareness Localization Repair
ASAT	Antalya Su ve ATiksu Idarasi
AWWA	American Water and Wastewater Association
CARL	Current Annual Losses
CIS	Customer Information System
DEM	Digital Elevation Model
DMA	District Metered Area
EPA	Environmental Protection Agency
GIS	Geographic Information System
GSM	Global System for Mobile
HCWW	Holding Company of Water and Wastewater in Egypt
HDPE	High Density PolyEethylene
ILI	Infrastructure Leakage Index
IWA	International Water Association
KHZ	Kilo Hertz
KWDN	Konyaalti Water Distribution Network
MDF	Maximum Daily Flow
MLD	Mega Liter per Day
MNF	Minimum Night Flow
MWC	Manila Water Company
NRW	Non-Revenue Water
PLC	Passive Leakage Control
PRV	Pressure Reducing Valve
PVC	Polyvinyl Chloride
RL	Real Water Losses
RTU	Remote Terminal Unit
SCADA	Supervisory Control And Data Acquisition
SI	Standard International Units
TUBITAK	The Science and Technological Research Council Of Turkey

UARL	Unavoidable Annual Losses
UK	United Kingdom
UKWIR	United Kingdom Water Industry Research
US	United State
WDM	Water Demand Management
WDN	Water Distribution Network
WDS	Water Distribution System
WDS	Water Distribution System
WL	Total Water Losses
WLTF	Water Loss Task Force
ZPT	Zero Pressure Test

List of Tables

Table 2-1: IWA standard water balance	7-
Table 2-2: Recommended indicators for physical losses and NRW	- 11 -
Table 2-3: Physical loss target matrix (Source: World Bank Institute)	- 13 -
Table 4-1: The components used of IWA water balance in this study	- 41 -
Table 4-2: The required parameters and data for water losses assessment	- 42 -
Table 4-3: The temporal assumption for the seasons of the year	- 43 -
Table 4-4: The temporal assumption for the period of study	- 43 -
Table 4-5: Calculation example for 1 hr. for the total inflow	- 44 -
Table 4-6: The calculated System Input Volume for the year 2010 and 2011	- 44 -
Table 4-7: Sample of one subscriber consumption records	- 45 -
Table 4-8: Sample of dividing water records per month	- 46 -
Table 4-9: Authorized water consumption for the years 2010 and 2011	- 46 -
Table 4-10: The required parameters and its required data for conducting consumption analy	sis
48 -	
Table 4-11: The average MNF for the years 2010 and 2011	- 49 -
Table 4-12: The ration between MNF and MDF for the years 2010 and 2011	- 50 -
Table 4-13: Accumulated inflow of water for the years 2010 and 2011	- 51 -
Table 4-14: Repair history sample for the year 2010	- 54 -
Table 4-15: The repair history for the years 2010 and 2011	- 55 -
Table 4-13. The repair history for the years 2010 and 2011	
Table 4-16: Total inflow for the analysis period	- 57 -
Table 4-16: Total inflow for the analysis period Table4-17: The Hydrulic pattern calculation for Winter season for the years 2010 and 2011	- 57 - - 60 -
Table 4-16: Total inflow for the analysis periodTable 4-16: Total inflow for the analysis periodTable4-17: The Hydrulic pattern calculation for Winter season for the years 2010 and 2011Table4-18: The Hydraulic pattern calculation for Summer season for the years 2010 and 201	- 57 - - 60 - 1
Table 4-16: Total inflow for the analysis period	- 57 - - 60 - 1
Table 4-16: Total inflow for the analysis period Table 4-16: Total inflow for the analysis period Table 4-17: The Hydrulic pattern calculation for Winter season for the years 2010 and 2011 - Table 4-18: The Hydraulic pattern calculation for Summer season for the years 2010 and 201 61 - Table 4-19: Data Input in Hydraulic modeling regarding different scenarios	- 57 - - 60 - 1
Table 4-16: Total inflow for the analysis period	- 57 - - 60 - 1 - 62 - - 63 -
Table 4-16: Total inflow for the analysis period - Table4-17: The Hydrulic pattern calculation for Winter season for the years 2010 and 2011 Table4-18: The Hydraulic pattern calculation for Summer season for the years 2010 and 201 61 - Table 4-19: Data Input in Hydraulic modeling regarding different scenarios Table 5-1: The water balance for the year 2010	- 57 - - 60 - 1 - 62 - - 63 - - 64 -
Table 4-16: Total inflow for the analysis period	- 57 - - 60 - 1 - 62 - - 63 - - 64 - - 65 -

List of Figures

Figure 2-1: The four components of a successful leakage management policy	14 -				
Figure 2-2: Sample of Data Logger Noise Graph Figure 2-3: Using Ground Microphone to Detect Leakage Figure 2-4: Schematic illustration of the cross-correlation method for pinpointing leaks in w					
				pipes(Hunaidi 2000)	17 -
				Figure 2-5: Leak run time and volume of water loss	18 -
Figure 2-6: Typical layout of DMA	20 -				
Figure 2-7: The Integration between continually updating GIS database and Hydraulic	modeling.				
	24 -				
Figure 2-8: PRV Effect on MNF	28 -				
Figure 2-9: Mapping of static pressure in Alpina Village supply zone	29 -				
Figure 2-10: Mapping of break frequency in service connections	30 -				
Figure 3-1: The geographic location of Antalya city	32 -				
Figure 3-2: The SCADA center controlling room	33 -				
Figure 3-3: The main interface for ASAT SCADA software	34 -				
Figure 3-4: The 18 DMAs of Konyaalti region	35 -				
Figure 3-5: Effects of water pressure on water losses with reducing water pressure	38 -				
Figure 4-1: The output data for a data noise logger	52 -				
Figure 4-2: : Listening to leaks along a pipe line using ground microphone	53 -				
Figure 4-3: Digital correlation technique	53 -				
Figure 4-4: GIS shapefiles converted to Physical WaterCad Model	56 -				
Figure 4-5: Creating nodes' service polygons	58 -				
Figure 4-6: The water source of DMA no. 2	59 -				
Figure 5-1: Pressure of critical points at hr 11:00	66 -				
Figure 5-2: Pressure of critical point year 2010	67 -				
Figure 5-3: Pressure of critical point year 2010	67 -				
Figure 5-4: MNF due to seasonal changes	69 -				
Figure 5-5: MNF / MDF ratio	70 -				
Figure 5-6: MNF vs. repairs	71 -				
Figure 5-7: Volume of water savings	72 -				
Figure 5-8: Annual average daily demand for the year 2010	73 -				
Figure 5-9: Annual average daily demand for the year 2011	73 -				
Figure 6-1: The pilot study area and the points of flowmeters and pressure gauges	77 -				

Figure 6-2: The difference between accumulated volume of water before and after repairs	78 -
Figure 7-1: The vicious NRW	81 -
Figure 7-2: The virtuous NRW	82 -
Figure 7-3: Water losses management 4 pillars	86 -

Table of Contents

1. Introduction	1 -
1.1. Problem Statement	1 -
1.2. Research objective	2 -
1.3. Choosing the area of study	2 -
1.4. Phase 2: Data collection	3 -
1.5. Phase 3: Conducting the Methodology	3 -
1.6. Extracting results	4 -
2. Literature Review	5 -
2.1. NRW overview	5 -
2.2. NRW Management	6 -
2.2.1. Definitions	8 -
2.3. Performance indicators for physical water losses	9 -
2.3.1. Expressing water losses as a percentage of total input volume	10 -
2.3.2. Other performance indicators for physical losses	10 -
2.3.3. The Benefits of the IWA/AWWA Standard Water Audit and	Performance
Indicators	11 -
2.3.4. The Infrastructure Leakage Index (ILI)	12 -
2.3.5. Physical loss target	13 -
2.4. Physical water losses 4 pillars	14 -
2.4.1. ALC strategies	15 -
2.4.2. Speed of repairs	18 -
2.5. Pressure management	18 -
2.6. District metered Area (DMA)	19 -
2.6.1. DMA design	21 -
2.7. Minimum Night Flow	22 -
2.8. Hydraulic modeling	23 -
2.9. Hydraulic modeling integration with GIS	23 -

	2.10.	Wa	ter Losses Experience from Literature	- 24 -
	2.1	0.1.	The Leakage Reduction Strategy in Low Pressure Conditions: The Manila V	Vater
	Co	ompany	Experience in the Ho Chi Minh City NRW Reduction Project	- 25 -
	2.1	0.2.	Strategies	- 25 -
	2.10.3		Results	- 26 -
	2.1 reg	0.4. gion	Applying the IWA WLTF Approach for pressure reduction in the West Ba - 27 -	alkan
	2.1	0.5.	DMAs and GIS Involvement as effective way to reduce losses Case study	from
	Sa	o Paulo) – Brazil	- 28 -
	2.11.	Fol	lowing the Success	- 31 -
3.	De	escriptio	on of the Research area	- 32 -
	3.1.	Antal	ya city	- 32 -
	3.2.	Kony	aalti region	- 35 -
	3.3.	Divid	ing Konyaalti region into DMAs	- 35 -
	3.4.	Water	r losses management	- 36 -
	3.4	4.1. V	Vater Losses Assessment	- 36 -
	3.4	I.2. H		- 38 -
	3.4	I.3. P	Pressure management	- 38 -
4.	Me	ethodol	ogy	- 40 -
2	4.1.	Distri	ct Metered Areas (DMA) – DMA No. 2	- 40 -
4	4.2.	Water	r Losses Assessment	- 41 -
2	4.3.	Consi	umption Curves Analysis (MNF analysis)	- 48 -
	4.3	3.1. N	ANF / MDF ratio	- 49 -
	43	32 V	Vater savings	- 50 -
,	1 /	Looka	age Monitoring	51
2	т. ч . лл		askaga monitoring stratagies (ALC)	50
	4.4	H.I. L	eakage monitoring strategies (ALC)	- 32 -
4	4.5.	Hydra	aulic modeling	- 55 -
5.	Re	sults		- 63 -

5.1. W	ater Losses Assessment Results	63 -
5.2. IL	I Results	64 -
5.3. Hy	vdraulic Modeling Results	65 -
5.4. Co	onsumption Curves Visualizing and Analysis Results	68 -
5.4.1.	MNF	68 -
5.4.2.	MNF / MDF ratio	69 -
5.4.3.	MNF vs. no. of repairs	70 -
5.4.4.	Water saving	71 -
5.4.5.	AADD	72 -
6. Discus	sion	75 -
6.1. Ar	ntalya city case study Approach	75 -
6.2. Lu	ixor case study approach	77 -
6.3. Di	scussing approaches	79 -
7. Conclu	usion and recommendations	81 -
7.1. Co	onclusion	81 -
7.1.1.	DMA establishment	83 -
7.1.2.	Conducting water balance	83 -
7.1.3.	Calculating ILI	84 -
7.1.4.	Replacing PLC with ALC	84 -
7.1.5.	On line monitoring using continuous measurements	84 -
7.1.6.	Using hydraulic modeling	84 -
7.2. Re	ecommendation	85 -
References		88 -

Chapter 1 Introduction

This study has been proposed basically to help the water administration entities to catch up with the new and modern technologies used in water management generally and water losses management especially. The GIS is playing the main role in the process because it is the first milestone of building a reliable database however this database concerns the physical characteristics of the water network, the customers' data, and the continuous monitoring data.

According to the staggering volume of water being lost all over the world in addition to the lack of water resources in most of the countries, the importance of a successful water losses management imposes itself as a cheap solution. Finding new sources of water may be even better than developing new natural source because in the case of saving water losses from water distribution networks, this water saved is treated water which means: (i) supplying additional treated water source (ii) saving cost and achieving profit to the supplying company.

This research has been conducted over two years of data collection, field investigations, result evaluation, checking data validity, and build up models. This effort can be categorized in the following phases:

1.1. Phase 1: Problem Statement

The first problem statement is the amount of water lost through the water distribution networks, which is defined by the term water losses. Some investigations were performed to identify how much the problem affects the water distribution network efficiency and what kind of actions was taken to fight with the water losses. In Egypt there is a conservative estimation of the total water losses as 50 - 60 % of the total production (Cairo water and wastewater municipality) and this is a real challenge facing the stakeholders of the water sector in Egypt. However, there is yet no clear or strict approach applied through the biggest water subsidiaries in Egypt. The problem statement has been changed from reducing total water losses to developing and conducting the right approach to manage water losses in water distribution networks.

1.2. Research objective

There were many trials by The Holding Company of Water and Wastewater (HCWW) through cooperation with other national or international technical assistance, but these trails resulted in nothing that could be achieved because of many issues, such as; lack of data, poor data recording system, the complexity of the water networks and the deterioration of the water distribution networks. Although of the continuing trials from stakeholders, still no real water losses procedures are being agreed upon all over the subsidiaries companies in Egypt. The objective of this research was to apply the accurate proper approach that is being used successfully in developed countries to a small separated water network which is defined by district metered area (DMA).

1.3. Choosing the area of study

Due to The improper data of the pilot DMAs that have been established by water authorities in Egypt such as in Luxor which was an incomplete experiment due to the missing accurate procedure and methodology, thus the results were not professionally evaluated and there was no real positive impact to the area or the network itself. Due to the unavailability of the data and the need for more experience, an international cooperation was sought with another association that has a successful experiment in water losses management. Antalya city which is located at the south of Turkey has a previous successful experiment with the water losses with cooperation with Akdeniz University in Antalya which was the technical consultant. Antalya water and wastewater authority (ASAT) divided Konyaalti region into 18 DMAs and established SCADA system for monitoring the water networks and measuring hydraulic and water quality parameters.

Through a technical visit to Antalya city for one year supported by EXCEED (exchange students program) of Germany, the stages of choosing a proper area of study (DMA no. 2 out of the 18 DMAs of Konyaalti region), data collection, data analysis and building the hydraulic model were facilitated and resulted into a complete area of study with complete and accurate data.