

Ain Shams University Faculty of Science Chemistry Department

Hazardous air pollutants emitted from Fossil-Fuel-fired Power Plants and their impacts on Greater Cairo air quality

A Thesis Submitted For the Degree of Doctor on philosophy in Chemistry (Analytical Chemistry)

Ву

Atef Mohamed Fathey Mohamed Mohamed Ali

M.Sc. (Inorganic Chemistry), Faculty of Science Helwan University, Cairo, 2004

> Department of Chemistry Faculty of Science Ain Shams University

Approval sheet

The Thesis entitled: Hazardous air pollutants emitted from

Fossil-Fuel-fired Power Plants and their impacts on Greater

Cairo air quality

Submitted for the Degree of Doctor on philosophy in Chemistry (Analytical Chemistry)

By

Atef Mohamed Fathey Mohamed Mohamed Ali

M.Sc. (Inorganic Chemistry), Faculty of Science Helwan University, Cairo, ۲۰۰۶

Supervisors

Signature

- **1. Prof.Dr. Mohamed Fathy El-Shahat** Professor of Analytical Chemistry Faculty of Science, Ain Shams University
- Y. Prof. Dr.Alia Abd El-Shakour Ali Professor of Air Pollution Chemistry National Research Center

*. Prof. Dr.Nadia Mohamed El-Taieb Professor of Air Pollution Chemistry National Research Center

E. Prof. Dr.Mahmoud Abd El-Magid Hassanien Professor of Air Pollution Chemistry Head of Air Pollution Department National Research Center

Head of Chemistry Department

Prof. Dr.Maged Shafik Antonious Nakhla

Content	
Title	Page
Acknowledgement	Ι
List of Abbreviations	II
Abstract	III
List of Tables	V
List of Figures	Х
Chapter-1: Introduction)
Introduction	N
Aim of Work	۲.
Plan of Work	۲.
Chapter- ⁷ : Review of Literature	۲ ۱
۲, ۱. Gases pollutants	۲ ۱
۲,۱,۱. Sulphur dioxide (SO _۲)	۲ ۱
γ , γ , γ , γ . Environmental impacts of SO _{γ}	۲۸
۲, ۱, ۲. Nitrogen dioxide (NO _۲)	۲۸
γ , γ , γ , γ . Environmental impacts of NO ₇	30
۲,۱,۳. Total Oxidants	30
$\gamma,\gamma,\gamma,\gamma$. Environmental impacts of O_r	٣٩
۲, ۱, ٤. Carbon monoxide (CO)	٣٩
۲, ۱, ٤, ۱. Environmental impacts of CO	٤.
γ , γ , \circ . Carbon dioxide (CO _{γ})	٤١
$\gamma, \gamma, \circ, \gamma$. Toxic effect CO _y	٤٤
۲,١,٦. Ammonia	٤٥
$\gamma,\gamma,\gamma,\gamma$. Risk assessment of NH_{γ}	٤٦
۲, ۱, ۷. Hydrogen Sulfide (H _۲ S)	<i>٤</i> ٧
γ , γ , γ , γ . Toxic impacts of $H_{\gamma}S$	٤٨
۲, ۱, ۸. Formaldehyde (HCHO)	٤٩
۲,۱,۸,۱. Environmental impacts of Formaldehyde	07
۲٫۲. Total Suspended Particulate Matter (TSP)	0 £
۲,۲,۱. Health effects of SPM	٥V
۲, ۳. Black Smoke (BS)	٥V
۲, ٤. Heavy Metals in suspended particulate matter	0 A
۲,٤,١. Lead	०१
۲,٤,٢. Nickel	٦٢

۲,٤,٣. Chromium	70
۲, ٤, ٤. Cadmium	77
۲,٤,°. Zinc	79
۲,٤,٦. Iron	٧.
۲, ۰. Heavy metals in Soil	\mathbf{v})
۲,٦. Polycyclic Aromatic Hydrocarbons (PAHs)	۲ ۹
۲,٦,١. Physical properties of PAHs	۲ ۹
۲,٦,٢. Chemical properties of PAHs	۲ ۹
۲,٦,٣. Environmental fate of PAHs	۲ ۹
۲,٦,٤. Health effects of PAHs	٨٩
۲,۷. Deposited Dust (Dustfall)	٨٩
۲,۸. Air Pollution from Thermal Power Plants	9 £
۲,۹. The Meteorological parameters	1 • 1
Chapter-": Materials and Methods of	1.7
Investigation	
۳, ۱. Area under Investigation	1.7
۳. ۲. Description of the Sampling Sites	۱.۷
۳, ۳. Measurement of air pollutants	١١٣
(,,,,). Measurements of air pollutants from stacks of	۱۱۳
thermal power plants	
r, r, r. Measurements of air pollutants in ambient air	117
۳, ۳, ۳. Measurement of sulphur dioxide	112
۳, ۳, ٤. Measurement of nitrogen dioxide	110
۳, ۳, ۰. Measurement of total oxidants	117
۳,۳,٦. Measurement of ammonia)) V
r, r, v. A colorimetric analysis of total aliphatic aldehvdes in air (MBTH method).	119
۳,۳,۸.Measurement of hydrogen sulfide (methylene blue method)	17.
r, ϵ . Determination of Particulate Matter	171
$(, \xi,)$. Determination of deposited particulates	171
$(, \xi,), $ Sampling of deposited particulates	171
$(, \xi,), \gamma$. Analysis of deposited particulates	171
$(, \xi,), (,)$. Total weight of deposited particulates	171
۳, ٤, ۲. Suspended particulate matter	171

$(, \xi, \gamma,)$. Determination of heavy metals	١٢٣
۳, ٤, ٢, ٢. Determination of Polycyclic Aromatic	175
Hydrocarbons (PAHs)	
۳,۰. Soil	177
۳,٦. Smoke	١٢٩
۳,۷. Gaussian plume model (Dispersion model)	۱۳.
۳,۸. Air-Q.۲,۲,۳ model	185
۳,۹. Statistical Calculation	122
Chapter- [£] : Results and Discussion	١٣٧
٤, ١. Monitoring of pollutants emitted from thermal power plants	۱۳۷
٤, ١, ١. Gaseous Pollutants Emitted from thermal power plants	177
$\xi, \gamma, \gamma, \gamma$. Sulphur dioxide (SO ₇)	١٣٧
ξ , γ , γ , γ , Nitrogen oxides (as NO _x)	122
$\xi_{1}, \xi_{2}, \xi_{3}$ Carbon monoxide (CO)	157
ξ_1, ξ_2 , Carbon dioxide (CO _x)	129
$\xi_{1}, \xi_{2}, \lambda_{2}$ Ammonia (NHr)	101
٤,),), T. Formaldehyde (HCHO)	107
$\xi_1, \xi_2, Hvdrogen sulfide (H_sS)$	100
٤, ۱, ۲. Suspended Particulate Matter (SPM) from power plants	101
ξ , ξ , Heavy metals in suspended particulate matter	١٦.
٤, ۱, ٤. Polycyclic Aromatic Hydrocarbons (PAHs) in SPM	175
٤, ١, ٥. Smoke	177
ξ , ξ , ξ , Soil pollution with Heavy metals	۱۷۳
ξ , ζ . Emission from thermal power plants	177
ξ, γ, γ . Gaseous Emission from thermal power plant	177
٤,٢,٢.Suspended Particulate Matter (SPM) Emission rate	١٨٤
٤, ٢, ٣. Smoke Emission rate	170
٤, ٢, ٤. Heavy metals Emission rate	۱۸٦
٤, ۲, ۰. Polycyclic Aromatic Hydrocarbon (PAHs) Emission rate	١٨٩

۶,۳. Dispersion of Air pollutants emitted from power plants	۱۹٦
٤,٣,١. Gaussian Plume Model	١٩٦
ξ, τ, τ . Dispersion of plume from power plants	۱۹۷
٤, ٣, ٢, ١. Diffusion of gaseous pollutants	۱۹۷
٤,٣,٢,٢.Diffusion of Suspended Particulate Matter (SPM)	۱۹۹
٤,٣,٢,٣. Diffusion of Heavy metals	۲۰۱
٤,٣,٢,٤.Diffusion of polycyclic aromatic hydrocarbons (PAHs)	۲۰۳
٤,٤. Ambient Air Quality Monitoring	۲.0
ξ, ξ, γ . Gaseous Pollutants in Ambient air	۲.0
ξ, ξ, γ, γ . Sulphur dioxide (SO ₇)	۲.٦
ξ, ξ, γ, γ . Nitrogen dioxide (NO ₇)	۲.۹
ξ, ξ, γ, τ . Total oxidants (O _r)	212
ξ, ξ, γ, ξ . Ammonia (NH _r)	212
٤,٤,١,٥. Formaldehyde (HCHO)	219
٤,٤,١,٦. Hydrogen sulfide (H _r S)	۲۲٤
٤,٤,٢. Particulate Matter	222
ξ, ξ, γ, γ . Deposited particulate matter (Dustfall)	222
$\xi, \xi, \gamma, \gamma, \gamma$. Total Rate of Deposited particulate matter	222
$\xi, \xi, \gamma, \gamma, \gamma$. Seasonal Variation of Total Deposits	229
٤,٤,٢,٢.Suspended Particulate Matter (SPM)	220
$\xi, \xi, \gamma, \gamma, \gamma$. Seasonal and annual concentrations of SPM	220
٤,٤,٣. Smoke	7 2 7
ξ, ξ, ξ . Heavy metals in suspended particulate matter	7 2 2
٤,٤,٥. Polycyclic Aromatic Hydrocarbons (PAHs) in SPM	707
٤,٤,٥,١.Source identification and evaluation of diagnostic ratios	222
٤,٤,٥,٢. Molecular diagnostic ratios	220
٤,٤,٥,٣.Carcinogenic fractions of PAHs	222
٤, °. Health impacts (Air Q. ۲, ۲, ۳. model)	227
٤, ٥, ١. NO ₇ Hospital Admissions Respiratory Disease	۲۷.
٤, ٥, ٢. Or Hospital Admissions Respiratory Disease	۲۷۳

٤,0,٣. SPM Hospital Admissions Respiratory Disease	
٤, ٥, ٤. BS Hospital Admissions Respiratory Disease	۲٨۰
Summary	270
o,). Pollutants emitted from thermal power plants	272
۰, ۲. Emission from thermal power plants	292
۰,۳. Dispersion of Air pollutants emitted from power plants	290
۰. ^٤ . Ambient Air Quality Monitoring	۲۹۷
۰,۰. Health impacts (Air-Q.۲,۲,۳. model)	۳.۳
Recommendation	۳.٦
References	۳.۷
Arabic summary	

Acknowledgement

I am deeply thankful to my God "Allah", by gracing of whom,, the completion and progress of this work was possible.

Firstly, I wish to express my deepest gratitude to **Prof. Dr. Mohamed F. El-Shahat**, professor of Analytical Chemistry Faculty of Science, Ain Shams University for sound supervision, kind help, valuable advice, constructive criticism and encouragement.

I would like to express my deepest thanks sincere appreciation and gratitude to **Prof. Dr. Alia A. Ali,** professor of Air Pollution, Air Pollution Department, National Research Center, for sµggestion and planning the program of work, sound supervision, valuable advice, guidance and continuous kindly help.

I would like to express my deepest thanks sincere gratitude to **Prof. Dr. Nadia M. El-Taieb,** professor of Air Pollution, Air Pollution Department, National Research Center, for sound supervision, valuable advice and constructive criticism and encouragement.

With sincere respect and gratitude, I would like express my deepest thanks to **Prof. Dr. Mahmoud A. Hassenien**, professor of Air Pollution, Head of Air Pollution Department, National Research Center, for helpful discussion, continuous support, encouragement, constructive criticism, sound supervision, valuable advice, guidance and continuous kindly help.

Thanks are also to the staff members of air pollution laboratory, national research center, for their help and cooperation.

Finally, I would like to express my deepest thanks and gratitude to my Mother, my Father, my Wife, my daµghter Nada, my sons Adham and Eyad for their support and prey to hope my success.

Abbreviation	Name
ACE	Acenaphthene
ACY	Acenaphthylene
AD	Air Dispersion Modelling Conversions and formulas
Air-Q	Air Quality health impact assessment software
ANT	Anthracene
AP	Air Pollution
APIS	Air Pollution Information System
ATSDR	Agency for Toxic Substances and Disease Registry
BAA	Benzo (a) anthracene
BAP	Benzo (a) pyrene
BapE	Benzo (a) pyrene – Equivelent
BAQ	Better Air Quality in Asian and Pacific Rim Cities
BBF	Benzo (b) fluoranthene
BEI	British Electricity International
BGP	Benzo (ghi) perylene
BKF	Benzo (k) fluoranthene
BS	Black Smoke
CalEPA	California Environmental Protection Agency
CAPMAS	Central Agency for Public Mobilization And Statistics
CARB	California Air Resources Board
CEPA	California Environmental Protection Agency
CEPC	Cairo Electric Production Company
CI	Confidence Intervals
CMEP	Chinese Ministry of Environmental Protection
CPAH	Combustion Polycyclic Aromatic Hydrocarbons
CRY	Chrysene
DBA	Dibenzo (a,h) anthracene
DRSCH	Directory of Refic Saydam Center of Hygiene
DSEWPC	Department of Sustainability Environment , Water,
	Population and Communities
ECDIN	Environmental Chemicals Data and Information Network
EEA	European Environment Agency
EEAA	Egyptian Environmental Affairs Agency
EMPH	Egyptian Minister of Public Health
EPA	Environmental Protection Agency
EPER	European Pollutant Emission Register
ESCOM	Electricity Supply Commission
ETCP	Earth Trends Country Profiles
FID	Flame Ionization Detection

List of Abbreviations

Abbreviation	Name
FLT	Fluoranthene
FLU	Fluorine
GC	Gas Chromatograph
GF	Glass Fibber filters
GG	Giga-gram
GHG	Greenhouse Gases
GTP	Geothermal Training Programme
GTPP	Gandhinagar Thermal Power Plant
GZ	Guangzhou city
HK	Hong Kong
HM	Heavy Metal
IARC	International Agency of Research on Cancer
IGAC	International Global Atmospheric Chemistry
IND	Indeno (¹ , ⁷ , ⁷ -c,d) pyrene
IUPAC	International Union on Pure and Applied Chemistry
JIS	Japanese Industrial Standard
JICA	Japan International Cooperation Agency
KEMCO	The Korea Electric power Corporation
KEPCO	The Korean Energy management Corporation
LRC	London Research Center
MATES	Multiple Air Toxic Exposure Study
MDHS	Methods for the Determination of Hazardous Substances
MN	Methane Number
MOE	Ministry Of Environment
MOEE	Ministry Of Electricity & Energy
MPAP	Matra Pre-accession projects program
MW	Megawatts
NAAQS	National Ambient Air Quality Standards
NAP	Naphthalene
NAS	National Academy of Science
NATA	The National-Scale Air Toxic Assessment
NEDA	N (Naphthyl) Ethylenediamine Dihydrochloride
NEERI	National Environmental Engineering Research Institute
NETC	National Environmental Technology Centre
NG	Natural Gas
NIEHS	National Institute of Environmental Health Sciences
NLM	National Library of Medicine
NM	News Medical

(Continue) List of Abbreviations

(Continue) List of Abbreviations

Abbreviation	Name
OECD	Organization for Economic Cooperation and
	Development
OSHA	Occupational Safety and Health Administration
PAHs	Polycyclic Aromatic Hydrocarbons
PHE	Phenanthrene
PYR	Pyrene
PRIDE	Project in Development and the Environment
RR	Relative Risk
SCAQMD	South Coast Air Quality Management District
SH	Shanghai city
SVOCs	Semi-Volatile Organic Compounds
TECO	Tampa Electric Company
TSP	Total Suspended Particulate matter
UAE	United Arab Emirates
UK-APIS	United Kingdom Air Pollution Information System
USAID/Egypt	United States Agency for International Development -
	Egypt
USDHHS	U.S. Department of Health Human Services
U.S.DOE/EIA	U.S. the Department Of Energy/Energy Information
	Administration
UNEP	United Environmental Programme
USEPA	U.S. Environmental Protection Agency
WB	World Bank
WHO	World Health Organization

Abstract

Air pollution from power plants use Fossil-Fuel-fired is one of the principal sources which responsible for emission of air pollutants where it causing some of most pressing environmental problems today. Emissions of sulphur and nitrogen compounds from power stations represent a significant fraction of the total emissions of these elements to the atmosphere. Understanding their subsequent chemical reactions in the atmosphere is of fundamental importance as without it, a quantitative assessment of their contribution to local and regional scale air pollution is not possible. Power plants are significant emitters of precursor gases of fine particulate matters. It is widely used recognized that air pollution from power plants adversely affects public health.

With the turn of the vist century, fossil fuels are still the predominant source of energy in most economic sectors worldwide, particularly in the electric power sector. Fossil fuels are generally composed of aliphatic hydrocarbons with impurities such as sulfur, water and other chemicals. The combustion of these chemicals results in the formation of effluents such as sulfur dioxide and oxides of nitrogen as well as carbon dioxide and other effluents. The rapid economic growth in developed as well as in developing countries has led to increases in energy consumption patterns and hence in stacks emissions that are causing air quality degradation. Encountering these emissions necessitates the need to implement strategies and plans to mitigate the impacts of energy conversion processes in general and power plants in particular on air quality and global environment.

The present work is designed to be v^{st} study to determine hazardous air pollutants (HAPs) concentration emitted from power plants stacks uses

different types of fossil- fuels. Assessment of gases and particulate matter concentrations and determine their chemical contents. Also estimate the risks due exposure of HAPs. Using some computer program software's to assess the impact of such pollutants on the surrounding.

<u>Key words:</u> HAPs - power plants - emissions – PAHs – Gaussian plume model – Air Q.Y,Y,T model - sulfur dioxide - oxides of nitrogen - deposited and suspended particulate matter.

List of Tables

		Page
Table-	Comparison between fine and coarse air pollution particles	٣
Table- ⁷	Various industries in Greater Cairo and emitted air pollutants.	٤
Table- ^r	PAHs compounds in terms of molecular weight and aromatic ring	٩
Table- [£]	Indicatory PAHs for various major sources	١٢
Table-°	Fuel consumption at central power stations	15
Table-7	Show Exhaust flue gas generated by combustion of fossil fuels in SI and USA units.	١٨
Table- [∨]	the annual average concentrations of SO_r in $\mu g/m^r$ during	۲۳
Table-^	estimated contributions of the main source to total SO_{τ} emission.	۲ ٤
Table-٩	Reference standards and guidelines for ambient SO_{τ}	۲ ٤
Table-1.	average concentration of SO_r during $r \cdots o$ at	۲۷
Table-11	Alexandria and Delta regions The estimate contributions of the main sources to total NO_x emissions.	٣.
Table-17	Annual average concentration of NO _{τ} (μ g/m ^{r}) during the period τ_{++} to τ_{++}	٣٢
Table-1۳	average concentration of NO _{τ} during $\tau \cdots \sigma$ at Alexandria and Delta regions	٣٤
Table-15	O_r concentrations in different cities over the world	3
Table-10	Emission of CO _v /year in different Countries	٤٣
Table-17	Occurrence of formaldehyde in outdoor (ambient) air	٥٣
Table-1V	Heavy metals in soil over the world	ν۳_۷۸
Table-1A	Physical properties of some individual PAHs	$\nabla V = \nabla X$
Table-19	Chemical identity of some polycyclic aromatic hydrocarbons (PAHs).	۸۳
Table-۲.	Concentrations of PAHs in aerosol samples from different cities and reference sites	۸۸_۸۹
Table-	Emissions into air related to \kwh of electricity distributed by each electric power station in Jaban	٩٥
	-	

during 1999

Table-77	Heavy metals Emissions into air related to \kwh of	
	electricity distributed by each electric power station in Jaban during 1999	٩٦
(Cont'd) L	ist of Tables	Page
۲able-۲۳	Emission of hazardous substances (kg/kwh)	٩٨
Table-75	Typical emission from power plants in Egypt (g/kwh)	٩٨
Table-۲0	Air Pollution Concentrations in Ben Arous, Tunisia	1
Table-۲٦	Comparison on Air Quality Standards	1
Table-۲∨	thermal power plants locations and characteristics	۱.۸
Table-۲۸	Sampling sites locations and characteristics.	1.9
Table-۲۹	Air-QY,Y, model inputs	121
Table-۳.	SO_{x} emission contributed by thermal power plants to	١٣٨
Table-۳۱	Seasonal and annual variation of Gaseous Pollutants emitted into the atmosphere from Shoubra El- Kheima thermal power plant during the period of November $\tau \cdots v$ to November- $\tau \cdots \wedge$.	١٣٩
Table-٣٢	Seasonal and annual variation of Gaseous Pollutants emitted into the atmosphere from Shoubra El- Kheima thermal power plant during the period of December $\tau \cdots \Lambda$ to November- $\tau \cdots \Lambda$.	١٤.
Table-۳۳	Seasonal and annual variation of Gaseous Pollutants emitted into the atmosphere from Helwan thermal power plant during the period of November $\tau \cdot \cdot v$ to November- $\tau \cdot \cdot \lambda$.	1 £ 1
Table-۳٤	Seasonal and annual variation of Gaseous Pollutants emitted into the atmosphere from Helwan thermal power plant the period of December $\gamma \cdots \Lambda$ to	157
	November-۲۰۰۹.	
Table-ro	The seasonal and annual mean concentration of SPM emitted from Shoubra El-Kheima and Helwan power plants (mg/m^{r}) during the period of study.	109
Table-۳٦	The mean seasonal and annual variation of Heavy metals concentrations in SPM in Shoubra El-Kheima and Helwan thermal power plants $(\mu g/m^{r})$ during the	١٦٣