ADSORPTION OF POTASSIUM IONS FROM VINASSE USING STRONG ACID CATION EXCHANGE RESIN

By

Eng. Eman Nader Abdulwahhab Moustafa

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

In

Chemical Engineering

FACULTY OF ENGINEERING, CAIROUNIVERSITY GIZA - EGYPT 2014

ADSORPTION OF POTASSIUM IONS FROM VINASSE USING STRONG ACID CATION EXCHANGE RESIN

By

Eng. Eman Nader Abdulwahhab Moustafa

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE In

Chemical Engineering

Under the Supervision of

Prof. Dr. Mai M. Kamal el deen Chemical engineering department Ass. Prof. Ahmed F. Nassar Chemical engineering department

Cairo University - Faculty of Engineering Cairo University - Faculty of Engineering

Ass. Prof. Marwa Saeed Mohamed Chemical Engineering Division National Research Center

FACULTY OF ENGINEERING – CAIRO UNIVERSIRY GIZA-EGYPT

2014

ADSORPTION OF POTASSIUM IONS FROM VINASSE USING STRONG ACID CATION EXCHANGE RESIN

By

Eng. Eman Nader Abdulwahhab Moustafa

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

In

Chemical Engineering

Approved by the Examining Committee

Prof. Dr. Mai M. Kamal el deen, Chemical Engineering Dept., Cairo University, Faculty of <u>Engineering</u> Prof. Dr. Nagwa Mahmoud Elmansy,

Chemical Engineering Dept., Cairo University, Faculty of Engineering

Prof. Dr. Mohamed Fadel Ahmed Soliman

Microorganisms Dept., Genetic Engineering Division, National Research Center

FACULTY OF ENGINEERING, CAIRO UNIVERSIRY GIZA-EGYPT

Engineer: Eman Nader Abdulwahhab Moustafa Date of Birth: 30/ 9 / 1985

Nationality: Egyptian

E-mail: imannader@gmail.com

Phone: 01110219700 Address: 6 Fisal–Haram- Giza

Registration Date: 1 / 10 / 2008

Awarding Date: 2014

Degree: Master of Science

Department: Chemical Engineering

Supervisors: Prof. Dr. Mai M. Kamal el deen Ass. Prof. Ahmed F. Nassar Ass. Prof. Marwa Saeed Mohamed

Examiners: Prof. Dr. Mai M. Kamal el deen Prof. Dr. Nagwa Mahmoud Elmansy Prof. Dr. Mohamed Fadel Ahmed Soliman

Title of Thesis:

ADSORPTION OF POTASSIUM IONS FROM VINASSE USING STRONG ACID CATION EXCHANGE RESIN

Key Words: Vinasse, Adsorption, Isotherm, Potassium sulfate, fertilizers, ion exchange resins

Summary:

Vinasse is the principal liquid waste effluent resulting from alcohol distillation unit, caused by beet or cane molasses fermentation. Increasing awareness of environmental issues in recent years has resulted in a number of technologies being applied for the vinasse treatment as it contains high COD, BOD and mineral nutrients. A possibility of producing the potassium sulfate fertilizer in the form of solution was investigated by adsorption of potassium ions from vinasse and then eluting the latter by sulfuric acid solution.

Vinasse was passed through strong acid cation exchange resins columns which adsorb potassium ions. Three technique of adsorption were used (Batch, Semi batch, and Fixed bed). Desorption of potassium was performed using H_2SO_4 solution forming potassium sulfate solution (15 % conc.), which could be used as a fertilizer, while the remaining vinasse free-potassium can be used in animal feed preparation.

It was observed that the adsorption capacity increases by increasing the flow rate, decreasing of initial concentration and decreasing temperature. The highest desorption capacity was achieved at 0.4M sulfuric acid solution and temperature of 35°C.

From economic study, it is concluded that the produced potassium sulfate solution cost is about 120.5 L.E/ton while the imported K_2SO_4 costs 1,400 L.E/ton, The selling price is 785L.E/ton, the annual return will be L.E, payback time = 6 months.

Acknowledgment

First of all I would like to express my great heartfelt gratitude and thanks to **Allah** who has given me the power and support to finish this thesis and surrounded me with the people who helped and encouraged me to do so.

I wish to thank **my parents** and my **little sister** who helped me and provided me with the suitable circumstances and atmosphere to accomplish my thesis. I also want to heartily thank **my husband** who backed me both emotionally and financially.

I wish to express my deepest feeling of gratitude to **Prof. Mai Mohamed Kamal el deen**, Professor of Chemical Engineering, Faculty of Engineering, Cairo University and **Dr. Marwa Saeed Mohamed**, Researcher of Chemical Engineering, Chemical Engineering Division, National Research Center for kindly supervising the present work, reading and criticizing the manuscript. Their valuable guidance and ultimate support are greatly appreciated.

No words are enough to thank my role model, **Dr. Ahmed Fayez Nassar**, Assistant Professor of Chemical Engineering, Faculty of Engineering, Cairo University who has exerted great efforts for suggesting the problem, planning, reading and criticizing the manuscript with great care and patience. I feel deeply indebted to him for his valuable advice, kind cooperation, and constructive criticism.

I am very grateful to Mr. **Moustafa Gadelrab**, the technical consultant in Egyptian Sugar and Integrated Industries Company for his technical help and facilitating things to me to accomplish my thesis.

Great thanks are also due to **Mr. Adel Ayoub**, Manager of Chemicals Factory, Egyptian Sugar and Integrated Industries Company for allowing me to use the factory's laboratories to perform the laboratory experiments. I thank **Mrs. Wafaa Welson**, Head of Receiving Materials Laboratory and the chemists of chemicals factory for their technical support and supplying me with the materials used in the experiments.

Last but not least I would like to thank my dear **coworkers** for encouraging and supporting me to finish my thesis especially my best friend **Eng. Wessam Abdultawaab**.

Table of Contents

Acknowledgements.....

Subject

Page

Table of	f Contents	i
List of T	Fables	v
List of F	igures	vii
List of a	bbreviations	х
Abstract	t	ix
СНАРТ	TER 1: INTRODUCTION	
1.1.	Sugar Industry	2
1.2	Industrial Processes Which Produce Vinasse	5
1.3.	Vinasse as Industrial Pollutant	5
1.4.	The Problem of Vinasse as Industrial Liquid Pollutant	6
1.5.	Organization of the Thesis	6
СНАРТ	TER 2: LITERATURE REVIEW	
2.1.	Introduction	9
2.1.1.	Characteristics of vinasse	9
2.1.2.	Disposal of vinasse	9
2.2.	Vinasse treatment and uses	11
2.2.1	Vinasse as fertilizer	11
2.2.2.	Anaerobic digestion (bio-digestion)	13
2.2.3.	Production of protein-rich fungal biomass	15
2.2.4.	Preparation of animal feed from vinasse	16
2.2.5.	Production of compost from vinasse	18
2.2.6.	Concentration of vinasse by evaporation	19
2.2.7.	Combustion of vinasse	20
2.2.8.	Drying of vinasse	21
2.2.9	Extraction of potassium from vinasse	23
2.2.9.1.	Chemical precipitation	24
2.2.9.2.	Electrodialysis	25
2.2.9.3.	Reverse osmosis (RO)	26
2.2.9.4.	Removal of potassium from vinasse by adsorption on resin	27
2.3.	Adsorption	28
2.3.1.	Adsorption phenomena: classification	29
2.3.2.	Adsorbents	29

Subject		Page
2.3.3.	Factors affecting on rate of adsorption	30
2.3.4.	Adsorption equilibrium	32
2.3.4.1.	Adsorption isotherms	32
а.	Langmuir isotherm	32
b.	Freundlich adsorption isotherm	37
с.	BET isotherm	40
2.3.4.2.	Adsorption systems	43
a.	Batch adsorption	44
b.	Fixed bed adsorption	44
2.4.	Advantages and disadvantages of fixed bed system	49
2.5	Ion exchange resin	50
2.5.1	Resin types	50
2.5.1.1.	Strong acid cation exchange resin	50
2.5.1.2.	Weak acid cation exchange resin	51
2.5.1.3.	Strong base anion resin	51
2.5.1.4.	Weak base anion resin	51
2.5.2.	How ion exchange resin work	52
2.5.3.	Advantages and disadvantages of ion exchange resin	54
2.6.	Aim of the thesis	55
	TER 3: EXPERIMENTAL TECHNIQUES	
3.1.	Experimental material and main apparatus	57
3.2.	Methods	57
3.2.1.	Equilibrium adsorption methodology	57
3.2.2.	Investigating the type of isotherm	58
3.3.	Adsorption systems	59
3.3.1.	Semi batch system	59
3.3.2.	Fixed bed system	60
а.	Single ion exchange column	60
b.	Two ion exchange columns connected in series	61
3.4.	Desorption	62
3.4.1.	Semi batch system	62
3.4.2.	Fixed bed system	63
3.5.	Raw materials preparations	65
3.5.1.	Resin activation	66
3.5.2.	Solids separation from vinasse	67
3.5.3.	Sulfuric acid preparation	68

Subject Pag		
3.5.4.	Preparation of standard solution for flame photometer	68
3.6.	Chemical analysis techniques	70
4. CHAP	TER 4: EXPERIMENTAL RESULTS AND DISCUSSIONS	
4.1.	Determination the equilibrium adsorption time	73
4.2.	Investigation of the type of isotherm	74
4.3.	Adsorption systems	76
4.3.1.	Semi batch system	76
4.3.1.1.	Effect of flow rate on potassium adsorption	76
4.3.1.2.	Effect of temperature on potassium adsorption	77
4.3.1.3.	Effect of initial potassium concentration on adsorption	79
4.3.2.	Fixed bed technique	80
4.3.2.1.	Adsorption in a single ion exchange column	80
4.3.2.1.1.	Effect of flow rate on potassium adsorption	80
4.3.2.1.2.	Effect of inlet initial concentration on potassium adsorption	81
4.3.2.2.	Adsorption in two ion exchange columns	82
4.3.2.2.1.	Effect of flow rate on potassium adsorption	82
4.3.2.2.2.	Effect of inlet initial concentration on potassium adsorption	84
4.3.3.	Effect of adsorption techniques on adsorption capacity	86
4.4.	Desorption technique	87
4.4.1.	Semi batch system	87
4.4.1.1.	Effect of temperature on potassium elution from resin	88
4.4.1.2.	Effect of acid concentration on potassium elution from resin	88
4.4.2.	Fixed bed system	89
4.4.2.1.	Desorption in single ion exchange column	89
4.4.2.1.1.	Effect of sulfuric acid temperature on elution of potassium	90
4.4.2.2.	Desorption using two ion exchange column	91
4.4.2.2.1	Effect of sulfuric acid concentration on elution of potassium	92
4.5.	Conclusion	95
5.	CHAPTER5: EQUIPMENT DESIGN	
5. 5.1.	Process data	97
5.1.1.	Raw material	97
5.1.2.	Treated product	97
5.1.2.	Potassium sulfate product	97
	-	
5.1.4.	Capacity	97

Subject		Page
5.1.5.	Process characteristics	97
5.2.	Process description	98
5.2.1.	Process principle	98
5.2.2.	Running diagram	99
5.3.	Equipment description	99
5.4.	Description of sequences	99
5.5.	Production	100
6.	CHAPTER6: COST ESTIMATION	
6.1.	Estimation of total capital investment	103
6.1.1.	Estimation of equipment cost	103
6.1.2.	Estimation of Equipment erecting	105
6.1.3.	Estimation of Instrumentation and control	105
6.1.4.	Estimation of Piping, fittings and manual valves	105
6.1.5.	Estimation of emergency	105
6.2.	Estimation of running cost	106
6.2.1.	Variable cost	106
6.3.	Estimation of Fixed cost	106
6.4.	Operating capital investment	107
6.5.	Calculation of capital investment and operating expenses	108
6.6.	The products quality	108
6.7.	Gains	109
7.	CHAPTER7: CONCLUSION AND RECOMMENDATIONS	110
8.	REFERENCES	114
9.	Appendix I: Experimental work	
10.	Appendix II: Basis of calculations and material balance	
11.	Appendix III: Equipment basic design	
12.	Appendix IV: Equipment specifications	
13.	Appendix V: Flow sheet	
14.	Arabic summary	
15.	Arabic abstract	

List of Tables

Table Description Page 2.1 Chemical composition of vinasse 10 2.2 The chemical composition of dried vinasse..... 22 23 Characteristics of adsorption process..... 29 Characteristics of different adsorbents..... 2.4 30 31 Adsorption column data parameters using semi batch system..... 59 3.2 Adsorption column data parameters using a single fixed bed column... 61 Adsorption column data parameters using two fixed bed column 33 61 connected in series..... Desorption column data parameters at different temperatures and acid 63 3.4 concentration using semi batch system..... 3.5 Desorption column data parameters at different temperatures for single 63 fixed bed column Desorption column data parameters at different acid concentration 64 3.6 using two fixed bed column connected in series..... 3.7 Chemical properties of CF (H⁺) resin..... 65 Wave length and flame color of elements by using flame photometer... 38 69 41 Values of K⁺ in vinasse at intervals of 15 minutes..... 73 Effect of flow rate on K⁺ adsorption capacity at 25°C and 15,000 mg/l 42 77 initial K+ concentration Effect of temperature on the K^+ adsorption capacity at constant flow 43 78 rate of 180 ml/h and initial concentration of 15,000 mg/l/..... Effect of initial concentration on K⁺ adsorption capacity at constant 4.4 79 flow rate of 180 ml/h and temperature of 25°C..... Effect of flow rate on K^+ adsorption capacity at constant initial 4.5 81 concentration of 17,264 mg/l and temperature of 30°C..... Effect of initial concentration on K^+ adsorption capacity at constant 82 4.6 flow rate of 360 ml/h and temperature of 30°C using semi batch system..... Effect of flow rate on K^+ adsorption capacity at constant initial 83 47 concentration of 12,000 mg/l and temperature of 30°C using single fixed bed column..... Effect of flow rate on K^+ adsorption capacity at constant initial 84 48 concentration of 12,000 mg/l and temperature of 30°C using two fixed bed column in series routing..... 4.9 Adsorption capacity at different initial concentration of Potassium by 85 using single column at constant flow rate of 360 ml/h and temperature of 30°C.....

Table Description

4.10	Adsorption capacity at different initial concentrations of potassium by using two columns connected in series at constant flow rate 360 ml/h and temperature 30°C	86
4.11	Adsorption capacity by using the three systems of adsorptions at constant flow rate of 360 ml/h, initial concentration of about 13,000 mg/l and temperature of 30°C	87
4.12	Effect of temperature on K^+ elution at constant flow rate of 1080 ml/h and sulfuric acid concentration of 0.4M	91
4.13	Desorption capacity of K^+ elution at different acid concentrations at constant flow rate of 1080 ml/h and temperature of 30 °C of the first column of adsorption.	94
4.14	Desorption capacity of K^+ elution at different acid concentrations at constant flow rate of 1,080 ml/h and temperature of 30 °C of the both columns of adsorption connected in series	94
6.1	Estimation of purchased cost of equipment	104
6.2	Fixed and working capital investment items for potassium sulfate manufacturing	104
6.3	The price of the instruments and control devices	105
6.4	Estimation of total capital investment	105
6.5	Annual running cost	107
6.6	Operating capital investment	108

List of Figures

Figure	Description	Page
1.1	Sugar cane and sugar beet	2
1.2	Block diagram of sugar industry and its uses	4
2.1	Using of vinasse in fertigation	11
2.2	Anaerobic digestion plant of vinasse	15
2.3	Basic scheme of the anaerobic digestion of vinasse	15
2.4	A countercurrent multistage forced circulation evaporators	19
2.5	The fouling on the tubes after evaporation process	20
2.6	The combustion chamber main dimensions and main components	21
2.7	The vinasse spry dryer	23
2.8	Block flow diagram of potassium sulfate crystallization	24
2.9	General description of the concept of concentration by evaporation producing potassium fertilizer.	25
2.10	Principle of simple electrodialysis process	26
2.11	Flow sheet for reverse osmosis vinasse depotassifiying	27
2.12	Langmuir isotherm	35
2.13	Single stage batch adsorption	38
2.14	Freundlich isotherm	39
2.15	Cartoon of nitrogen adsorbing onto an alumina surface assuming a BET isotherm.	40
2.16	BET isotherm.	43
2.17	Adsorption zone progression in a fixed bed adsorber	45
2.18	Fixed bed adsorption in series	46
2.19	Fixed bed adsorption in parallel	46
2.20	A strongly acidic sulfonated polystyrene exchange resin	52
2.21	A strongly basic quaternary ammonium anion exchange resin	52
2.22	Expanded view of resin bed	53
3.1	Batch adsorption experiment	58
3.2	A semi batch adsorption system.	60
3.3	Two columns fixed bed system connected in series	62
3.4	Flame photometer	64
3.5	Resin washing with distilled water	67

Figure Description

riguie	Description	1 a
3.6	Solids separation from vinasse	68
4.1	Concentration of K^+ in vinasse vs., time	73
4.2	Isotherm of potassium extraction on cation exchange resin	75
4.3	Linearization of the isotherm by Langmuir	75
4.4	Linearization of the isotherm by Freundlich	76
4.5	Effect of flow rate on breakthrough curves of K^+ adsorption using CF (H^+) resin of semi batch technique at 25 °C and 15,000 mg/l initial K^+ concentration	77
4.6	Effect of temperature on breakthrough curves of K^+ adsorption using CF (H ⁺) resin of semi batch technique at 180 ml/h and 15,000 mg/l initial K ⁺ concentration	78
4.7	Effect of initial concentration on breakthrough curves of K^+ adsorption using CF (H ⁺) resin of semi batch technique at 180 ml/h and 25 °C	79
4.8	Effect of flow rate on breakthrough curves of K^+ adsorption using CF (H ⁺) resin of fixed bed technique at 30 °C and 17,264 mg/l initial K ⁺ concentration	80
4.9	Effect of initial concentration on breakthrough curves of K^+ adsorption using CF (H ⁺) resin of fixed bed technique at 360 ml/h and 30°C	81
4.10	The effect of changing flow rate on the breakthrough curves of K^+ adsorption from vinasse at 12,000 mg/ml initial concentration, 30 °C and 180 ml bed height using single fixed bed column	83
4.11	The effect of changing flow rate on the breakthrough curves of K^+ adsorption from vinasse at 12,000 mg/ml initial concentration, 30 °C and 180 ml bed height of two ion exchange columns series routing	84
4.12	The effect of changing initial concentration on the breakthrough curves of K^+ adsorption from vinasse at 360 ml/h , 30 °C and 180 ml bed height using the first fixed bed column	85
4.13	The effect of changing initial concentration on the breakthrough curves of K^+ adsorption from vinasse at 360 ml/h , 30 °C and 180 ml bed height using the two fixed bed column.	86
4.14	Effect of adsorption systems on the breakthrough curve of K^+ adsorption from vinasse at 360 ml/h, 30°C and 180ml bed height	87
4.15	Formation of crystals inside the column due to high acid concentration	89
4.16	Breakthrough curve of K^+ desorption from CF (H ⁺) resin of fixed bed technique at 0.4M acid concentration at 1080 ml/h and 25°C	90
4.17	The effect of increasing temperature on the breakthrough curves of K^+ desorption from CF (H ⁺) resin of fixed bed technique at 0.4 M acid concentration, 1,080 ml/h	91

Figure Description

igure	Description	Page
4.18	Breakthrough curve of K^+ desorption from CF (H ⁺) resin of fixed bed technique at 0.4M acid concentration, 1080 ml/h and 30 ^o c, using one column.	92
4.19	Breakthrough curve of K^+ desorption from CF (H ⁺) resin of fixed bed technique at 0.4M acid concentration, 1080 ml/h and 30°C, using two columns connected in series.	92
4.20	The effect of decreasing acid concentration on the breakthrough curves of K+ desorption from CF (H^+) resin of fixed bed technique at 0.4M acid concentration, 1080 ml/h of first column	93
4.21	The effect of decreasing acid concentration on the breakthrough curves of K^+ desorption from CF (H ⁺) resin of fixed bed technique at 0.4 M acid concentration, 1,080 ml/h, of two columns connected in series	94

List of abbreviations

CEC	Cation exchange capacity
GHG	Greenhouse gas
BOD	Biological oxygen demand
COD	Chemical oxygen demand
UASB	Up flow anaerobic sludge blanket
SCOD	Soluble chemical oxygen demand
DM	Dry matter
DS	Dissolved solids
GM	Grape marc
BW	Body weight
MAS	Molasses alcohol stillage
EC	Electrical conductivity
ED	Electro dialysis
RO	Reverse osmosis
MTZ	Mass transfer zone
BDST	Bed depth service time
PDM	Pore diffusion model
PSDM	Pore and surface diffusion model
HSDM	Homogenous surface diffusion model
EBT	Eriochrome black T
EDTA	Ethylene di tetra amine
CMC	Condensate soluble vinasse
PLC	Programmed logic control