Expression of Chemokine Receptor "CXCR4" as a Prognostic Factor in Acute Myeloid Leukemia

Thesis

Submitted for Partial Fulfillment of Master Degree in (Clinical and Chemical Pathology)

By Amira Nabil Abd El-Hamied Ahmed

M.B., B.Ch. Faculty of Medicine- Ain Shams University

Supervised by

Professor / Hala Mahmoud Hamdi Abaza

Professor of Clinical Hematology Faculty of Medicine- Ain Shams University

Doctor / Amany Ahmed Osman

Assistant Professor of Clinical and Chemical Pathology Faculty of Medicine- Ain Shams University

Doctor / Laila Ahmed Abou-Ismail

Assistant Professor of Clinical and Chemical Pathology National Research Center

> Faculty of Medicine Ain Shams University 2009

Acknowledgment

First of all, great thanks to "GOD".

My sincere gratitude to **Prof. Dr. Hala Mahmoud Hamdy Abaza**, Professor of Clinical Hematology, Faculty of Medicine, Ain Shams University, for her kind assistance to follow closely every step in this work, sincere encouragement and valuable criticism. It was a great honour for me to work under her supervision.

I am deeply indebted to **Dr. Amany Ahmed Osman**, Assistant Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University, for her most generous help, valuable advice and precious comments.

I would like to express deep appreciation to **Dr. Laila Ahmed Abou-Ismail,** Assistant Professor of Clinical and Chemical Pathology, National Research Center, for her valuable time, help and guidance.

Thanks are due to **Dr. Dalia Hassan El-Lebeidy**, Researcher of Clinical and Chemical Pathology, National Research Center, for her valuable suggestions and considerable effort throughout this work.

Lastly, but not the least, I would like to record my greatest thanks and gratitude to my family for their actual help and support, and to everyone who helped me throughout this work. ظهور مستقبل الإثاره الكيميائيه "سي اكس سي ار٤" كعامل لاستقراء مآل ابيضاض الدم النقوى الحاد

> رسالة توطئة للحصول علي درجة الماجستير في (الباثولوجيا الاكلينيكية و الكيميائية)

أستاذ مساعد الباثولوجيا الاكلينيكية والكيميائية كلية الطب- جامعة عين شمس

الدكتور/ ليلي أحمد أبو اسماعيل أستاذ مساعد الباثولوجيا الاكلينيكية والكيميائية المركز القومي للبحوث

LIST OF CONTENTS

Chapter I: Introduction and Aim of Work 1	
Review of Literature	•
Chapter II: Acute Myeloid Leukemia 4	•
A- Definition 4	•
B- Epidemiology 4	
C- Pathogenesis 5	
D- Classification)
E- Clinical Manifestation of AML 1	5
F- Laboratory Diagnosis of AML 1	8
G- Prognostic Factors of AML	3
H- Therapy of AML 4	.7
Chapter III: Chemokines and Chemokine Receptors	3
A-Definition of Chemokines	3
B- Structure and Genetics of Chemokine	3
C- Classification of Chemokine System	5
D- Role of Chemokines	6
E- Chemokine Receptors	7
Chapter IV: Chemokine Receptor CXCR4	2
A- Structure	52
B- Site of Expression	3
C- Regulation of CXCR4 Expression	4
D- Regulation of CXCR4 Signaling	<u>9</u>

E- Stromal Cell Derived Factor -1(SDF-1)	70
F- CXCR4/CXCL12 axis	72
G- Pathological Role of CXCR4	74
1- Role of CXCR4 in Non-Neoplastic Conditions	74
2- Role of CXCR4 in Neoplastic Conditions	76
H- Methods of Detection of CXCR4	87
I- CXCR4 Antagonist; A Potential Therapeutic Target	91
Patients and Methods	95
Results	102
Discussion	125
Summary and Conclusions	135
Recommendations	
References	
Appendix	-
Arabic Summary	-

LIST OF TABLES

Table No.	Title	Page
1	Morphologic (FAB) classification of AML	10
2	MIC classification of AML	
3	The WHO classification of AML	12
4	The WHO classification of AML, not otherwise	12
•	categorized	13
5	The WHO classification 2008 scheme for myeloid	10
C C	neoplasms	14
6	Panel of MoAbs to differentiate AML and ALL	25
7	Immunologic phenotypes of AML	26
8	Score for biphenotypic acute leukemia	28
9	Clinical correlations of frequent cytogenetic	
	abnormalities observed in AML	30
10	Prognostic factors in acute myeloid leukemia	35
11	Cytogenetic risk group assignments of younger adults	
	with AML	42
12	Genetic abnormalities in normal cytogenetic AML	43
13	The chemokine receptors	61
14	Functional CXCR4 expression on normal stem cells	
	and cancer cells	64
15	Characteristics of all studied AML patients	108
16	Comparison between AML patients group versus	
	control group as regards the studied parameters	109
17	CXCR4% in different FAB subtypes and their	
	statistical comparison	109
18	CXCR4-MFI in different FAB subtypes and their	
	statistical comparison	110
19	Comparison between low and high CXCR4%	
	expression as regards clinical and hematological studied	110
•	parameters.	110
20	Comparison between low and high CXCR4%	
	expression as regards FAB subtypes, fate, outcome and	111
	disease-free survival	111

21	Comparison between low and high CXCR4% expression as regards cumulative survival and disease-	111
22	free survival. Comparison between low and high CXCR4-MFI	111
	expression as regards clinical and hematological studied parameters	112
23	Comparison between low and high CXCR4-MFI expression as regards FAB subtypes, fate, outcome and	
24	disease-free survival Comparison between low and high CXCR4-MFI expression as regards cumulative survival and disease-	113
	free survival	113
25	Correlation between CXCR4 (% and MFI) and various studied parameters in all studied AML patients	114
26	Association between low, high CXCR4% expression and the standard prognostic factors in AML patients	115
27	Association between low, high CXCR4-MFI expression	
28	and the standard prognostic factors in AML patients Regression analysis	116 117
Ι	Clinical and hematological parameters for all studied controls	_
II	Clinical and hematological parameters for all studied AML patients	_
III	FAB subtypes and immunophenotyping for all studied AML patients	_
IV	Results of CXCR4 expression, outcome and survival	
	for all studied AML Patients	-

LIST OF FIGURES

Fig.	Title	Page
No.		
1	Pyoderma gangrenosum	16
2	Pyoderma gangrenosum	16
3	Leukemia cutis	17
4	Acute myeloblastic leukemia without differentiation	
	(M1 AML)	20
5	Acute promyelocytic leukemia (M3 AML, APML)	21
6	M3 AML with Auer rods	21
7	Acute monoblastic leukemia (M5a AML)	22
8	M5b AML	22
9	The peroxidase reaction	24
10	M5 AML (AMoL), non-specific esterase (NSE) stain	25
11	Phases of AML therapy	48
12	Chemokine families	54
13	Diagrammatic representation of the chemokine receptor	58
14	Typical structure of a chemokine receptor (CXCR4)	63
15	Regulation of CXCR4 expression	66
16	T-lymphocyte-tropic HIV-1 infection of CXCR4	
	expressing cells	75
17	The role of the SDF-1–CXCR4 axis in	
	migration/circulation of normal stem cells and	
	metastasis of cancer stem cells	78
18	Fluorescence detection and cell sorting by a flow	
	cytometer	90
19	CXCR4 antagonist	93
20	Flowcytometric analysis of AML case	118
21	Flowcytometric analysis of AML case	118
22	Flowcytometric analysis of AML case	119
23	Flowcytometric analysis of AML case	119
24	Flowcytometric analysis of AML case	120
25	Flowcytometric analysis of AML case	120
26	Median of CXCR4% expression in different FAB	
	subtypes	121

27	Median of CXCR4-MFI expression in different FAB subtypes	121
28	Receiver Operating Characteristics curve for diagnostic performance of CXCR4%	121
29	Receiver Operating Characteristics curve for diagnostic	122
	performance of CXCR4-MFI	122
30	Kaplan-Meier curve for cumulative disease-free survival data in AML patients with low and high	
	CXCR4% expression	123
31	Kaplan-Meier curve for cumulative overall survival data in AML patients with low and high CXCR4%	
	expression	123
32	Kaplan-Meier curve for cumulative disease-free survival data in AML patients with low and high	
	CXCR4-MFI expression	124
33	Kaplan-Meier curve for cumulative overall survival data in AML patients with low and high CXCR4-MFI	
	expression	124

LIST OF ABBREVIATIONS

AIDS	Acquired immunodeficiency syndrome
ALL	Acute lymphoblastic leukemia
AML	Acute myeloid leukemia
ANLL	Acute nonlymphocytic leukemia
AP	Acid phosphatase
APL	Acute promyelocytic leukemia
APL-V	Acute promyelocytic leukemia- variant
ATRA	All-trans-retinoic acid
BFGF	Basic fibroblast growth factor
BM	Bone marrow
BRCP	Breast cancer resistance protein
С	Single cysteine residue
CAE	Chloroacetate esterase
CAM-DR	Cell adhesion-mediated drug resistance
CBC	Complete blood count
CC	Cysteine-Cysteine
CD	Cluster of differentiation
CEC	Circulating endothelial cells
CGH	Comparative genomic hybridization
CLL	Chronic lymphocytic leukemia
CML	Chronic myeloid leukemia
CNS	Central nervous system
CR	Complete remission
CRc	Complete cytogenetic remission
CSF	Cerebrospinal fluid
CX3C	Cysteine-3aa-Cysteine
CX3CR1	Fractalkine receptor
CXC	Cysteine-aa-Cysteine
CXCR4	CXC Chemokine receptor-4
DAG	Diacyl-glycerol
DARC	Duffy antigen
DC	Dendritic cell
del	Deletion

DFS	Disease free survival
DIC	Disseminated interavascular coagulation
DNA	Deoxyribonucleic acid
ECM	Extracellular matrix
EGF	Epidermal growth factor
EGIL	European Group for the Immunological Characterization
	of Leukemias
ELR	Three amino acid motif "Glu-Leu-Arg"
EM	Electron microscopy
FAB	French-American-British
FCM	Flow cytometry
FISH	Fluorescence in-situ hybridization
FLT-3	Fms-like tyrosine kinase
FN	Fibronectin
G-CSF	Granulocyte colony-stimulating factor
GDP	Guanosine diphosphate
GM-CSF	Granulocyte Monocyte Colony stimulating factor
Gp	Glycoprotein
GPCRs	G protein-coupled receptors
GTP	Guanosine triphosphate
GVL	Graft-versus-leukemia
Hb	Hemoglobin
HIF-1∝	Hypoxia-inducible factor-1 alpha
HIV	Human immunodeficiency virus
HLA	Human leucocyte antigen
HSCS	Hematopoietic stem cells
IL	Interleukin
INFs	Interferons
INF-γ	Interferon-γ
inv	Inversion
IPT	Immunophenotyping
K	Potassium
Kd	Kilodalton
LDH	Lactate dehydrogenase
LESTER	Leukocyte-expressed seven-transmembrane receptor
LFA- 1	Leukocyte function-associated antigen-1

LIF	Leukemia inhibitory factor
LM	Light microscopy
LN	Lymph node
LRP	Lung resistance protein
MAP	Mitogen activated protein
M-CSF	Macrophage- Colony stimulating factor
MDR	Multidrug resistance
MDS	Myelodysplastic syndrome
MGSA	Melanocyte growth stimulating activity
MIC	Morphologic-immunologic- cytogenetic
MM	Multiple myeloma
MoAbs	Monoclonal antibodies
MPNS	Myeloproliferative neoplasms
MPO	Myelo-peroxidase
MRD	Minimal residual disease
MSC	Mesenchymal stromal cells
Na	Sodium
NF- [∞] b	Nuclear factor- ^{<i>k</i>} b
NHL	Non-Hodgkin lymphoma
NK	Natural killer
NRF-1	Nuclear Respiratory Factor-1
NSE	Non specific estrases
OS	Overall survival
PAS	Periodic acid Schiff
PB	Peripheral blood
PBSC	Peripheral blood stem cells
PBSF	Pre-B-cell growth-stimulating factor
PCR	Polymerase chain reaction
PDGF-R	Platelet derived growth factor receptor
Pgp	P-glycoprotein
Ph+	Malignant Philadelphia chromosome-positive
PIP ₂	Phosphatidylinositol 4, 5-biphosphate
PKC	Protein kinase C
PLC	Phospholipase C
PMPs	Platelet-derived microparticles
PR	Partial remission

Post remission survivals
Prothrombin time
Partial thrompoblastin time
Pertussis toxin
Retinoic acid receptor
Retinoblastoma
Renal cell carcinoma
Regulators of G-protein signaling
Ribonucleic acid
Reverse transcriptase-polymerase chain reaction
Sudan black-B
Stem cell
Severe combined immunodeficiency
Small-cell lung cancer
Stem cell transplantation
Standard deviation
Stromal cell derived factor-1
Specral karyotyping
Translocation
Terminal deoxynucleotidyl transferase
Transforming growth factor beta
Total leukocytic count
Tumor necrosis factor-a
Tumor suppressor gene p53
Tumor Suppressor Gene
Vascular endothelial growth factor
Von Hippel-Lindau tumor suppressor gene
Very late antigen
White blood cell
World Health Organization
Wilms Tumor-1 Gene
Ying Yang 1

I) INTRODUCTION

Acute myeloid leukemia (AML) is a heterogeneous group of diseases characterized by uncontrolled proliferation of myeloid progenitor cells (**Scott et al., 2005**). The AML is an aggressive malignancy with accumulation of blast cells in bone marrow. Myeloblasts can invade peripheral blood stream, and then localize in extramedullary sites. The regulation of this process has not been clearly explained so far. However, interactions between some chemokines and their specific receptors could be one of the mechanisms responsible for such kind of migration (**Mazur et al., 2007**).

Many critical interactions among cells of the immune system are controlled by soluble mediators called "cytokines". The cytokines are a diverse group of intercellular signaling proteins that regulate, not only local and systemic immune and inflammatory responses, but also wound healing, haemopoiesis and many other biologic processes (Le et al., 2004). The chemotactic cytokines, called chemokines, are a super-family of small secreted cytokines that were initially characterized through their ability to prompt the migration of leucocytes (Koizumi et al., 2007). They are grouped into four classes based on the position of key cysteine residue: C, CC, CXC, and CX3C (Barbero et al., 2002).

The CXCR4 is a G protein-linked seven trans-membrane spanning chemokine receptor that binds stromal-cell derived factor-1 (SDF-1) (**Barretina et al., 2003**). Chemokine receptor (CXCR4) is essential for homing and maintenance of haematopoietic stem cells in distinct stromal cell niches within the marrow (**Burger and Burkle, 2007**).

¹

Recent studies have reported that SDF-1 and functional CXCR4 microparticles are implicated in the pathogenesis and progression of AML. They also proposed that CXCR4 level is potentially valuable as an additional diagnostic AML variable (**Kalinkovich et al., 2006**). The CXCR4 expression in AML is a prognostic marker that can rapidly and easily be determined at disease presentation, **Spoo et al. (2007)**, suggested the incorporation of CXCR4 into the risk assessment of AML patients.