Expression Of E-Cadherin And Ki-67 (MIB-1) In Transitional Cell Carcinoma Of The Urinary Bladder

Thesis

Submitted for partial fulfillment of M.D. Degree in "Pathology"

BY

Naglaa Mohamed Nabil Algendy

(Master Degree of Pathology – Ain Shams) Supervised by

PROF. DR.: SHADIA HUSSEIN MABROUK

Professor and Head of Pathology Department Faculty of Medicine – Ain Shams University

PROF. DR.: AMIR AHMED SEDKY

Professor of pathology Faculty of Medicine – Ain Shams University

PROF. DR. FATEN ABD-ELAZIZ GHAZAL

Professor of pathology Faculty of Medicine – Ain Shams University Faculty of Medicine Ain Shams University 2011

ACKNOWLEDGEMENT

First and forever, thanks for **ALLAH** helping me to complete this work.

I have very special thanks and appreciation to **Professor Dr. Shadia**

Hussein Mabrouk, Professor and Head of pathology department, Faculty of Medicine, Ain Shams University; the main person behind all effort and good things in this work and the source for moral and scientific support. No word will be enough to express my gratitude for her kindness and all what you have done to me all the time.

I thank gratefully **Professor Dr. Amir Ahmed Sedky**, Prof. of Pathology, Faculty of Medicine, Ain Shams University for his kind support and guidance.

I am also very grateful to Professor *Dr. Faten Abd-eL Aziz Ghazal* Prof. of Pathology, Faculty of Medicine, Ain Shams University for here kind supervision and patience reviewing this work. Without her support, this work would not be completed.

Also, I should express my warmest thanks to **all staff members and colleagues** in the Pathology Department, Ain Shams University for their kind care and sympathy throughout this work. And lastly, I am very thankful for my family for tolerating me and supporting me to achieve one of my main goals by finishing this thesis.

Aim of the work:

The aim of the present study is to evaluate the expression of Ecadherin and Ki-67 (MIB-1) in urothelial transitional cell carcinoma and to compare the immunoreactive results with the standard histopathological measures including the grade as well as the stage of the tumor.

INTRODUCTION:

Bladder cancer has a high incidence in many developed countries. In the United State, bladder cancer is reported as the 4th cancer in incidence among male patients, whereas it ranks the 11th among female patients with cancer (Wong-You–Cheong et al, 2006).

In Egypt, bladder cancer is considered as one of the most common cancers. Transitional cell carcinoma constitute only 31% of bladder cancer in Egypt, however, this incidence is increasing annually compared to other pathological types (Mokhtar, 1991).

Urinary bladder carcinoma is characterized by a high recurrence rate after the initial treatment by endoscopic resection. In fact, about 70% of the patients showed tumors recurrence after tumor resection and some of these patients eventually showed progression towards invasive and more aggressive disease (Stein et al, 1998, Droller, 1998 and Schultz, 2006).

The ability of molecular markers to predict tumor recurrence or progression has been investigated intensively over the last two decades. A substantial number of potential molecular markers for the prediction of clinical course and outcome have been identified in recent studies of molecular biology and genetics.

Disruption of cell–cell and cell–extracellular matrix junctions is an important key for tumor cells growth, migration, invasion into surrounding tissues, and metastasis. The majority of studies in this area focus on the role of E-cadherin in

1

malignant cell transformation and progression. In general, Ecadherin expression was most often decreased in the undifferentiated "aggressive" carcinomas that have high invasive potential (Takeichi, 1993, Ivanov et al, 2001, and Pienado et al, 2004). However, data from variable sources showed no correlation between down expression of E-cadherin and tumor aggressiveness.

Loss of E-cadherin expression, among other factors, was associated with a poor prognosis and disease recurrence in both univariate and multivariate analysis (Fromont et al, 2005).

Bryan and Tselepis, (2010) found that cadherin switching (from E-cadherin to P- and N-cadherins) was important process late in the molecular pathogenesis of bladder cancer. It might hold some of the answers to the development of muscle invasive and metastatic disease. This finding may open the way for researchers to study the phenomenon of cadherin switching rather than expression alone.

Anti Ki-67 antibody MIB-1; a proliferative biomarker, has been widely used in histopathologic studies to estimate the growth fraction of human neoplastic tissue samples. This marker has shown promise as an independent prognosticator of patient outcome in several malignancies (Li et al, 2004, Morinaga, et al 2005 and Gimott, et al 2005).

Ki-67 over expression was studied to diagnose difficult cases with flat bladder lesions as CIS, and urothelial dysplasia. Sun et al, (2002) studies 30 cases with urothelial dysplasia and

2

found a significant increase in Ki-67 expression among cases with high grade dysplasia as well as cases with CIS.

In a huge recent multicenter study by Margulis et al, (2009) Ki-67 expression was assessed in tumor tissue from 713 patients treated with radical cystectomy and bilateral lymphadenectomy at six centers. The study showed that a high Ki-67 labeling index was independently associated with established features of aggressive urothelial carcinoma, disease recurrence, and cancer-specific survival. The authors concluded that routine assessment of Ki-67 expression status along with assessment of other established predictors of urothelial carcinoma outcome has the potential to improve identification of patients who are at increased risk for disease progression after radical cystectomy and thus may benefit from perioperative systemic chemotherapy.

List of Contents:

Content	Page
Introduction	1
Aim of Work	4
Review of Literature	5
 Epidemiology and Etiology of Bladder Cancer 	5
Histopathology of the urinary bladder	22
Tumor markers and its role in urinary bladder carcinoma	63
E-CADHERIN; pathophysiology	74
E- cadherin and bladder cancer: role and possible uses	82
Ki-67 (MIB1) and bladder cancer	88
Material and Methods	100
Results	109
Discussion	177
Summary	201
Conclusions	209
Recommendations	210
References	211
Arabic Summary	246

Table	Title	Page
Table 1	Histologic comparison between reactive urothelium, hyperplasia, dysplasia & CIS.	32
Table 2	Classification of urinary bladder tumors.	34
Table 3	WHO grading of TCC.	52
Table 4	Comparison of WHO 1973 and WHO/ISUP 1998 classification.	52
Table 5	TNM classification of urothelial carcinoma.	55
Table 6	Correlation between Jewett-strong and TNM staging systems of bladder cancer.	56
Table 7	Apoptosis/cell-cycle proteins markers with significant effect in bladder cancer.	71
Table 8	Proliferative/mitogenic protein markers with significant effect in bladder cancer.	72
Table 9	Angiogenesis/cell-signalling or adhesion/invasion markers with significant effect in bladder Cancer.	73

Table	Title	Page
Table 1	Type of specimens among 50 cases of TCC.	124
Table 2	Incidence of the clinical symptoms among 50 cases of TCC.	125
Table 3	Radiological findings among 50 cases of TCC.	126
Table 4	Cystoscopic findings among 50 cases of TCC.	127
Table 5	Histopathological grading in 50 cases of TCC.	128
Table 6	Histopathological staging of the 50 cases of TCC.	128
Table 7	Lymph node and local invasion of the near organs among 10 cases with radical cystectomy specimens	129
Table 8	The overall immunoreactivity for E-cadherin in 50 cases of TCC.	129
Table 9	The correlation of tumor grade and immunoreactivity to E-cadherin.	131
Table 10	Correlation between tumor staging and immunoreactivity to E- cadherin .	132
Table 11	Correlation between tumor grading and immunoreactivity to Ki-67.	134
Table 12	Correlation between tumor staging and immunoreactivity to Ki-67.	135

List of Graphs (Review section):

Graph	Title	Page
Graph 1	A drawing shows normal bladder wall	23
Graph 2	Diagram shows the stages of tumor invasion in bladder cancer.	54

List of Graphs (Result section):

Graph	Title	Page
Graph 1	The main presenting symptoms among 50 cases with TCC.	125
Graph 2	The radiological findings among 50 cases with TCC.	126
Graph 3	The cystoscopic findings among 50 cases with TCC.	127
Graph 4	Site distribution of 50 cases of bladder TCC during cystoscopic examination.	127
Graph 5	Histological grade and stage for 50 cases with TCC.	128
Graph 6	The overall immunoreactivity to E-cadherin among 50 cases with TCC.	129
Graph 7	A negative statistical correlation between tumor grade and immunoreactivity to E-cadherin.	130
Graph 8	The relation between tumor stage and immunoreactivity to E- cadherin.	131
Graph 9	The overall reactivity for Ki-67 among 50 cases with TCC.	132
Graph 10	The relation between tumor grade and immunoreactivity to Ki-67.	133
Graph 11	The relation between tumor stage and the immunoreactivity for Ki-67.	135

List of Figures (Results Section):

Figure	Title	Page
Figure 1	Conventional TCC papillary non-invasive showing papillary growth pattern (H&E X 100).	136
Figure 2	Conventional TCC papillary non-invasive grade II showing connective tissue core and papillary fronds. (H&E X 200).	136
Figure 3	TCC showing nested growth pattern, some calicified and degenerating bilharzial ova (H&E X 200).	137
Figure 4	High power field of the previous figure showing Nested growth pattern and calcified bilharzial ova (H&E X 400).	137
Figure 5	TCC showing micropapillary pattern (H&E X 100).	138
Figure 6	TCC showing micropapillary pattern (H&E X 200).	138
Figure 7	TCC showing clear cell pattern (H&E X200).	139
Figure 8	TCC showing clear cell pattern (H&E X400).	139
Figure 9	Conventional TCC on the left side with glandular growth pattern at the right side of the field (H&E X 100).	140
Figure 10	TCC showing glandular pattern of growth in the center of the field (H&E X 100).	140
Figure 11	TCC showing sarcomatous pattern (H&E X 100).	141
Figure12	High power field of the previous figure showing spindle cell sarcomatous pattern (H&E X 200).	141

Figure 13	TCC grade III showing plasmacytoid (signet ring appearance) (H&E X 400).	142
Figure 14	TCC showing vascular invasion (H&E X 400).	142
Figure 15	TCC grade I showing mild anaplasia of the linning epithelium (H&E X 400).	143
Figure 16	TCC grade II showing mitotic activity (H&E X 400).	143
Figure 17	TCC papillary non-invasive grade III showing prominent hyperchromatic pleomorphic nuclei (H&E X 200).	144
Figure 18	Invasive TCC grade III showing mitotic activity and giant cell formation (H&E X 400).	144
Figure 19	In situ carcinoma showing replacement of the surface epithelium by neoplastic cells (H&E X 400).	145
Figure 20	TCC showing invasion of the lamina propria (H&E X 200).	145
Figure 21	TCC showing invasion to the lamina propria and superficial muscle (H&E X 100).	146
Figure 22	TCC showing invasion of the superficial muscle by neoplastic cells (H&E X 200).	146
Figure 23	TCC showing invasion to the deep muscle (H&E X 400).	147
Figure 24	TCC with glandular growth pattern showing invasion to the deep muscle (H&E X 200).	147
Figure 25	TCC showing glandular differentiation with mucin production (H&E X 200).	148

Figure 26	TCC showing invasion of the perivesical fat (H&E X 200).	148
Figure 27	TCC showing malignant deposits in lymph node (H&E X 200).	149
Figure 28	Hyperplastic mucosa shows diffuse memberanous staining of the urothelial cells for E-Cadherin (IHC X 400).	149
Figure 29	Diffuse E-Cadherin staining of the urothelial cells both in hyperplastic epithelium (right side) and In situ carcinoma (left side) (IHC X 200).	150
Figure 30	High power field of the previous figure showing In situ carcinoma with strong diffuse reactivity (IHC X 400).	150
Figure 31	Invasive TCC showing diffuse memberanous staining of the neoplastic cells for E-cadherin (IHC X 100).	151
Figure 32	Invasive TCC showing diffuse staining of the neoplastic cells for E-cadherin (IHC X 100).	151
Figure 33	Invasive TCC showing diffuse memberanous staining of the neoplastic cells for E-cadherin (IHC X 200).	152
Figure 34	High power field of the previous figur (IHC X 400).	152
Figure 35	Superficial papillary TCC showing heterogenous staining in about 90% of the neoplastic cells (IHC X 200).	153
Figure 36	Invasive TCC showing focal staining of the neoplastic cells (IHC X 100).	153
Figure 37	Invasive TCC showing focal memberanous staining of the neoplastic cells with anti-E-cadherin (IHC X 200).	154

Figure 38	In situ TCC grade III with invasion of the lamina propria showing diffuse strong staining of the neoplastic cells with anti-E-cadherin (IHC X 400).	154
Figure 39	Invasive TCC grade III showing diffuse membranous staining of the neoplastic cells for E-cadherin (IHC X 200).	155
Figure 40	Invasive TCC grade III showing diffuse membranous staining of the neoplastic cells for E-cadherin (IHC X 400).	155
Figure 41	Invasive TCC grade III showing heterogenous staining of the neoplastic cells for E-cadherin (IHC X 400).	156
Figure 42	Superficial non invasive TCC grade II showing diffuse staining of the neoplastic cells with anti-E-cadherin (IHC X 200).	156
Figure 43	Invasive TCC grade II showing diffuse strong staining of the neoplastic cells with anti-E-cadherin (IHC X 400).	157
Figure 44	Invasive TCC grade II showing diffuse staining of the neoplastic cells with anti-E-cadherin (IHC X 200).	157
Figure 45	Invasive TCC grade II showing diffuse staining of the neoplastic cells with anti-E-cadherin (IHC X 200).	158
Figure 46	In situ carcinoma grade II showing membranous heterogenous staining in 90% of the neoplastic cells with anti-E-cadherin (IHC X 200).	158
Figure 47	Superficial papillary TCC grade II showing weak staining of the neoplastic cells with anti-E-cadherins (IHC X 200).	159

Figure 48	Non invasive superficial papillary TCC grade II showing diffuse weak staining of the neoplastic cells with anti-E-cadherins (IHC X 100).	159
Figure 49	High power field of the previous figure showing diffuse weak staining of the neoplastic cells with anti-E-cadherin (IHC X 200).	160
Figure 50	In situ carcinoma showing diffuse membranous staining of the neoplastic urothelial cells with anti-E-cadherin (IHC X 400).	160
Figure 51	Superficial papillary TCC showing diffuse staining of the neoplastic cells with anti-E-cadherin (IHC X 200).	161
Figure 52	TCC stage T1 showing invasion of the lamina propria by neoplastic cells displaying diffuse strong staining with anti-E-cadherin (IHC x 100).	161
Figure 53	TCC stage T1 showing heterogenous staining of the neoplastic cells for E-cadherin (IHC x 200).	162
Figure 54	TCC stage T2a showing focal staining of the neoplastic cells for E-cadherin (IHC x 200).	162
Figure 55	Invasion of the deep muscle by neoplastic cells displaying diffuse membranous staining with anti-E-cadherin (IHC x 200).	163
Figure 56	TCC stage (T2b) showing invasion of the deep muscle by neoplastic cells displaying diffuse strong staining with anti-E-cadherin (IHC x 200).	163
Figure 57	High power field of the previous figure showing diffuse strong staining of the neoplastic cells with anti-E-cadherin (IHC x 400).	164