Ain Shams University Faculty of Science Geophysics Department

Aquifer mapping using Pre-stack Seismic Data, WDDM, Nile Delta.

A thesis submitted for the degree of Master of Science as a partial fulfillment for the requirements of Master degree of Science in Applied Geophysics.

By

Islam Yehia Ahmed Mohamed

B.Sc. in Geology and Geophysics Faculty of Science – Ain Shams University, 2007

То

Geophysics Department Faculty of Science Ain Shams University

Supervised by

Prof. Dr. Abd Elnaser Mohamed Helal

Professor of Geophysics Geophysics department – Faculty of Science – Ain Shams University

Dr. Azza Mahmoud Abd El-Latif El-Rawy

Lecturer of Geophysics Geophysics department – Faculty of Science – Ain Shams University

Cairo - 2015

<u>Note</u>

The present thesis is submitted to faculty of Science, Ain Shams University in partial fulfillment for the requirements of the Master degree of Science in Geophysics.

Beside the research work materialized in this thesis, the candidate has attended ten post-graduate courses for one year in the following topics:

- 1. Geophysical field measurements
- 2. Numerical analysis and computer programming
- 3. Elastic wave theory
- 4. Seismic data acquisition
- 5. Seismic data processing
- 6. Seismic data interpretation
- 7. Seismology
- 8. Engineering seismology
- 9. Deep seismic sounding
- 10. Structure of the earth

He successfully passed the final examinations in these course.

In fulfillment of the language requirement of the degree, he also passed the final examination of a course in the English language.

Prof. D. Said Abdel-Maaboud Aly

Head of Geophysics Department

Acknowledgments

After thanks to Allah, I would like to thank Prof. Dr. **Abd Elnaser Helal** and Dr. **Azza El-Rawy** for their guidance and leading comments in this work and reviewing the write up.

I would like also to thank **RASHPETCO** and **BG-Egypt** for providing the data.

Dedication

This work is dedicated to my **family** who has been always supporting me. Especial dedication is to my **mother** whose love and devotion kept me going.

Abstract

Water production is the main production problem in WDDM concession in Nile delta. Water comes in surprisingly so fast with high rates. This comes from the underestimation of the aquifer description. Usually aquifer is estimated "guessed" and modeled as numerical aquifer. Unfortunately stacked seismic reflection data doesn't help so much in mapping aquifers. Water sands reflectivities appear as much dimmer amplitudes. If seismic can give a hand in this it would be priceless knowledge. The study area, Sequoia gas field, is located in West Delta Deep Marine (WDDM) concession. It is about 70 kilometers to the North East offshore Alexandria.

The rock physics model suggests that, the intercept and the gradient of a shale-to-shale interface are close to those of shale-to-water interface. However the shale-to-gas interface has about the same magnitude (but opposite polarity) of shale-to-water however the gradient is much higher. So when the seismic CDPs are stacked, gas sand amplitudes dominates the picture and the water sands lie in the same color range of the shales. In order to overcome this problem, we need to go back to the pre-stack data and invert them for the physical properties, so their effect on the post-stack can be separated, analyzed and used for the seismic facies classification.

AVO simultaneous inversion inverts pre-stack seismic into elastic properties; compressional impedance, shear impedance and density. The products of AVO simultaneous inversion can be coupled with other wire-line logging data via Bayesian classification, so seismic sections can be transformed into geologic cross-sections with meaningful facies codes. Then water sands can be discriminated from other facies existing in the field so they can be delineated, mapped and modeled in the 3D static models. The Bayesian classification outputs gave a reasonable match to the actual facies found in the wells of the study area.

Keywords: Water production, AVO simultaneous inversion and Naïve Bayesian Classification

.

CONTENTS

AcknowledgmentsIII				
AbstractV				
Contents				
List of FiguresXI				
List of Tables				
1 Introduction 1				
1.1 Location of Study Area 1				
1.2 Aim of Study				
1.3 Available Data				
1.4 Methodology and Workflow				
2 Regional Geological Setting 4				
2.1 Introduction				
2.2 Stratigraphy 4				
2.2.1Pre-Miocene				
2.2.2 Miocene				
2.2.3 Pliocene to Recent				
2.2.3.1 Kafr El Sheikh Formation				
2.2.3.2 El Wastani Formation 8				
2.2.3.3 Mit Ghamr Formation				
2.2.4 Pleistocene				
2.3 Structural Setting				
2.3.1 Rosetta Fault				
2.3.2 East-West Faults 11				
2.4 Tectonic Evolution 11				
2.5 Field Geology				

3	Rock Physics	. 17
	3.1 Introduction	. 17
	3.2 Theoretical Background	. 17
	3.2.1 Elastic Properties	. 17
	3.2.1.1 Bulk Modulus- Incompressibility (K)	. 18
	3.2.1.2 Shear Modulus – Rigidity (µ)	. 18
	3.2.1.3 Lame's Constant (λ)	. 18
	3.2.2 Seismic Properties	. 19
	3.2.2.1Compressional Velocity (VP)	. 19
	3.2.2.2 Shear Velocity (VS)	. 19
	3.2.2.3 Poisson's Ratio (σ)	. 19
	3.2.2.4 Lambda Rho Attributes	. 20
	3.2.3 Anisotropic Properties	. 20
	3.2.4 AVO Modeling Theory	. 20
	3.2.4.1 Shuey's Approximation	. 22
	3.2.4.2 Aki-Richard Approximation	. 23
	3.2.5 AVO Analysis Theory	. 23
	3.3 Point Modeling	. 26
	3.4 Facies Interpretation	. 28
	3.5 Finding Best Discrimination Spaces	. 28
4	AVO Inversion	. 33
	4.1 AVO Inversion Theory	. 33
	4.1.1 Fatti Modification of Aki-Richard's Equation	. 34
	4.1.2 Expressing Reflectivities in Impedances	. 34
	4.1.3 Fatti Modification of Aki-Richard's Equation	. 36
	4.1.4 Convolution as a Matrix Multiplication	. 36
	4.1.5 Final Inversion Formula Form	. 37
	4.2 Wavelet Extraction	. 41

4.3 Angle Stacks Conditioning	44
4.3.1 Frequency Filtering	46
4.3.2 Events Alignment (Trim Statics)	47
4.3.3 Amplitude Balancing/Scaling	48
4.4 Initial Model Building	51
4.4.1 Initial Model Geometry	51
4.4.2 Well Data	51
4.4.2.1 Well Data Lateral Interpolation	51
4.4.2.2 Well Data Vertical Extrapolation	52
4.4.3 Initial Model Layering	52
4.4.4 Initial Model Frequency Content	53
4.4.5 Initial Model Parameters Summary	55
4.5 Inversion Parameters Optimization	55
4.5.1 Wavelets Set	55
4.5.2 Constraining Relationships	55
4.5.3 Pre-whitening Method	59
4.5.4 Scalars	60
4.5.5 Inversion Sensitivities	60
4.6 Inversion Outputs	68
5 Facies Classification	75
5.1 Introduction	75
5.2 Theoretical Background	76
5.2.1 Bayesian Classification	76
5.2.1.1 Theory Mathematical Development	76
5.2.1.2 Applied Intuitive Understanding of the Theory	77
5.2.2 PCA Theory	79
5.2.2.1 Points Projection	80
5.2.2.2 Finding PCAs	82

5.2.2.3 Variance Theory	. 83
5.2.2.4 Singular Decomposition Theory	. 84
5.3 Principal Component Analysis	. 85
5.4 Properties Distributions & Distributions Modeling	. 87
5.5 Classification at Wells	. 90
5.6 Classifying AVO Inversion Volumes	. 92
6 Summary and Conclusions	100
Appendix A	103
Data QC	103
A.1 Check-shots Editing	103
A.2 Check-shot Correction	105
Appendix B	110
AVO Inversion	110
B.1 Wavelet Extraction	110
B.2 AVO Synthetics and Selecting Base Case Wavelets Set	114
B.3 Angle Stacks Conditioning – Events Alignment (Trim Statics)	121
B.4 Amplitude Balancing (Scaling)	127
References	130

List of Figures

Figure 1-1: Sequoia location map1
Figure 1-2: Study workflow
Figure 2-1: Generalized Lithostratigraphic Column of the Nile Delta area
(EGPC, 1994)5
Figure 2-2: Nile Delta tectonostraigraphy showing key stratigraphic and
tectonic events and hydrocarbon occurrences.(Dolson et al., 2005)
Figure 2-3: Main fault trends of the Nile Delta. Modified from (Abd El Aal et
al., 2000)
Figure 2-4: The faults, anticlines, and convergence arcs are compiled by Abd-
Allah (2012)
Figure 2-5: stratigraphic column of WDDM Nile delta (Nigel cross et al,
2009)14
Figure 2-6: Geological model of Sequoia gas field. It is an early Pliocene
slope channel. (Nigel cross et al, 2009)15
Figure 2-7: Sequoia reservoir architecture (Nigel cross et al, 2009)15
Figure 2-8: A is amplitude map between the top and base surfaces, B is the
top two-way time interpretation16
Figure 2-9: Pressure vs. depth for the four wells, shows that the Northern
wells are of different pressure than the Southern ones16
Figure 3-1: Bulk Modulus of a rock. Modified from European Space Agency.
Figure 3-2: Shear Modulus of a rock. Modified from European Space Agency.
Figure 3-3: Wave Reflection and Transmition of waves. After Hampson and
Russell Software manual guide v. 9/R1.7
Figure 3-4: AVO classes related to clastics geologic setting. After Rocky
Roten et al (2014)24
Figure 3-5: Intercept versus gradient crossplot displaying location of AVO
classes. After Rocky Roten et al (2014)26
Figure 3-6: Intercept gradient plot for three interfaces from a point model. 27
Figure 3-7: Amplitude versus angle plot for the three point interfaces.
Reflectivities modeled by Shuey's equation27

Figure 3-8: Quality check of the visually-re-interpreted facies and original
NMR interpretation for Rosetta-10
Figure 3-9: Vp/Vs ratio vs. P-impedance cross-plot of Rosetta-10 data colored
by NMR original facies (Left) and re-interpreted one (right)29
Figure 3-10: Vp/Vs ratio vs. P-impedance cross-plot of all wells colored by
facies
Figure 3-11: Poisson's ratio vs. P-impedance cross-plot of all wells colored
by facies
Figure 3-12: Lambda*Rho vs. P-impedance cross-plot of all wells colored by
facies
Figure 3-13: Mu*Rho vs. P-impedance cross-plot of all wells colored by
facies
Figure 3-14: Mu*Rho vs. Lamda*Rho cross-plot of all wells colored by
facies
Figure 3-15: S-Impedance vs. VpVs ratio cross-plot of all wells colored by
facies
Figure 4-1: Convolution Example
Figure 4-2: Constraining the inversion by the deviations from the background
trend
Figure 4-3: AVO simultaneous inversion workflow41
Figure 4-4: Wavelets extraction workflow
Figure 4-5: Averaging of best extracted wavelets per well in both time (top)
and frequency (bottom) domains
Figure 4-6: Comparison between the AVO synthetic and the raw seismic
gather at Rosetta-10 well location, (Peak is soft kick = downward
decrease of impedance = blue)44
Figure 4-7: Comparison between AVO response for the top reservoir at
Rosetta-10 well on the AVO synthetic (left) and raw seismic
gather (right), (amplitude balancing step, Positive value = soft kick
= peak = downward decrease in acoustic impedance)45
Figure 4-8: Angle gather conditioning workflow
Figure 4-9: Amplitude spectra of seismic gather volume before (top) and after
(bottom) applying the low-pass filter displayed in transparent
orange in the top graph47

Figure 4-10: Log panel for Rosetta-10 showing effect of frequency filtering
and trim statics on the seismic angle gather, (Peak is soft kick =
downward decrease of impedance = blue)49
Figure 4-11: Amplitude balancing Equations
Figure 4-12: AVO gradient analysis of the top gas at Rosetta-10 well
comparing AVO response before (left) and after (right),
(amplitude balancing step, Positive value = soft kick = peak =
downward decrease in acoustic impedance)
Figure 4-13: The effect of conditioning the layering to the horizons53
Figure 4-14: Effect of high-cut frequency filtering of well log data in building
the initial model54
Figure 4-15: Summary of the optimum initial model parameters
Figure 4-16: LnZs vs. LnZp plot on the left and LnDn vs. LnZp on the right.
Shows that there are some off-trend points
Figure 4-17: cross-plot between sonic and shear transit time sonic data, color-
coded by facies and symbol-coded by wells, shows that the
anomalous points belong to Sapphire-1 well58
Figure 4-18: Seismic cross section across three wells, displays thinner
Figure 4-18: Seismic cross section across three wells, displays thinner overburden in Sapphire-1 location
Figure 4-18: Seismic cross section across three wells, displays thinner overburden in Sapphire-1 location. 58 Figure 4-19: Inversion parameters sensitivities summary. 62
Figure 4-18: Seismic cross section across three wells, displays thinner overburden in Sapphire-1 location. 58 Figure 4-19: Inversion parameters sensitivities summary. 62 Figure 4-20: Inversion trials description. 63
 Figure 4-18: Seismic cross section across three wells, displays thinner overburden in Sapphire-1 location
 Figure 4-18: Seismic cross section across three wells, displays thinner overburden in Sapphire-1 location
 Figure 4-18: Seismic cross section across three wells, displays thinner overburden in Sapphire-1 location
 Figure 4-18: Seismic cross section across three wells, displays thinner overburden in Sapphire-1 location
 Figure 4-18: Seismic cross section across three wells, displays thinner overburden in Sapphire-1 location
 Figure 4-18: Seismic cross section across three wells, displays thinner overburden in Sapphire-1 location
 Figure 4-18: Seismic cross section across three wells, displays thinner overburden in Sapphire-1 location
 Figure 4-18: Seismic cross section across three wells, displays thinner overburden in Sapphire-1 location
 Figure 4-18: Seismic cross section across three wells, displays thinner overburden in Sapphire-1 location
 Figure 4-18: Seismic cross section across three wells, displays thinner overburden in Sapphire-1 location
 Figure 4-18: Seismic cross section across three wells, displays thinner overburden in Sapphire-1 location
 Figure 4-18: Seismic cross section across three wells, displays thinner overburden in Sapphire-1 location

Figure 4-26: Inverted P-impedance section at Rosetta-10 location, the colored
strip in the gap is the P-impedance from the log data, black log is
GR, blue is resistivity69
Figure 4-27: Inverted P-impedance section at Sapphire-1 location, the colored
strip in the gap is the P-impedance from the log data, black log is
GR, blue is resistivity70
Figure 4-28: Inverted S-impedance section at Sapphire-1 location, the colored
strip in the gap is the S-impedance from the log data, black log is
GR, blue is resistivity70
Figure 4-29: Inverted S-impedance section at Rosetta-8 location, the colored
strip in the gap is the S-impedance from the log data, black log is
GR, blue is resistivity71
Figure 4-30: Inverted S-impedance section at Rosetta-10 location, the colored
strip in the gap is the S-impedance from the log data, black log is
GR, blue is resistivity71
Figure 4-31: Inverted Density section at Rosetta-8 location, the colored strip
in the gap is the density from the log data, black log is GR, blue is
resistivity72
Figure 4-32: Inverted Density section at Rosetta-10 location, the colored strip
in the gap is the density from the log data, black log is GR, blue is
resistivity72
Figure 4-33: Inverted Density section at Sapphire-1 location, the colored strip
in the gap is the density from the log data, black log is GR, blue is
resistivity73
Figure 4-34: Inverted Vp/Vs section at Rosetta-10 location, the colored strip
in the gap is the Vp/Vs from the log data, black log is GR, and blue
is resistivity73
Figure 4-35: Inverted Vp/Vs section at Rosetta-8 location, the colored strip in
the gap is the Vp/Vs from the log data, black log is GR, and blue
is resistivity74
Figure 4-36: Inverted Vp/Vs section at Sapphire-1 location, the colored strip
in the gap is the Vp/Vs from the log data, black log is GR, and blue
is resistivity74
Figure 5-1: Example of 2D data scatter
Figure 5-2: Projecting a point into a specific direction
Figure 5-3: Projecting a point onto other basis

Figure 5-4: Modeling Vp/Vs ratio distributions for the three rock types; A for
shale, B for brine sands and C is for gas sands. Modeled
distributions are in orange
Figure 5-5: Modeling S-impedance distributions for the three rock types; A
for shale, B for brine sands and C is for gas sands. Modeled
distributions are in orange
Figure 5-6: Summary of the raw distributions on left and modeled
distributions on right
Figure 5-7: Bayesian classification result in summation curve on right, with
the raw facies on the next left one, color-coded similarly but a bit
lighter for the classification probabilities
Figure 5-8: Example of misinterpretation, where the gas sand properties are
just anomalous or extremes in statistical terms. The point values
are in red lines in the raw distributions
Figure 5-9: Bayesian classification probabilities compared to GR and
resistivity log at the blind well (Sapphire-1)92
Figure 5-10: Water sand probability cube across the three wells high
probability is in red, gamma ray log is on the left of each well path
and resistivity on the right of each well path. Low GR at Rostta-
10 in the red circle are in a casing shoe
Figure 5-11: Gas sand probability cube across the three wells high probability
is in red, gamma ray log is on the left of each well path and
resistivity on the right of each well path. Low GR at Rostta-10 in
the red circle are in a casing shoe
Figure 5-12: Shale probability cube across the three wells high probability is
in blue, gamma ray log is on the left of each well path and
resistivity on the right of each well path. Low GR at Rostta-10 in
the red circle are in a casing shoe
Figure 5-13: Base case seismic facies probability line across the three wells,
gamma ray log is on the left of each well path and resistivity on
the right of each well path. Low GR at Rostta-10 in the red circle
are in a casing shoe
Figure 5-14: Zoomed seismic facies cross sections at Rosetta-8 in A,
Sapphire-1 in B and Rosetta-10 in C, dashed lines are the horizons
interpretations of Top gas, base gas and base channel from top to
bottom