WATER MANAGEMENT IN SANDY SOIL USING NEUTRON SCATTERING METHOD

By

KHOLOOD MAHMOUD MOHAMED

B.Sc. Agric. Sc. (General), Suez Canal University, 1992 M.Sc. Agric. Sc. (Soil Science), Ain Shams University, 2004

> A thesis submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in Agricultural Science (Soil Science)

Department of Soil Science Faculty of Agriculture Ain Shams University

Approval Sheet

WATER MANAGEMENT IN SANDY SOIL USING NEUTRON SCATTERING METHOD

By

KHOLOOD MAHMOUD MOHAMED

B.Sc. Agric. Sc. (General), Suez Canal University, 1992 M.Sc. Agric. Sc. (Soil Science), Ain Shams University, 2004

This thesis for Ph.D. degree has been approved by:

Dr. Mahmoud Mohamed Ibrahim	• • • • • • • • • • • • • • • •
Prof. Emeritus of Soil Science, Faculty of	f Agriculture
Tanta University	
Dr. El-Toni Mohamed Ali	•••••
Prof. Emeritus of Soil Science, Faculty of	Agriculture
Ain Shams University	
Dr. Mohamed El-Sayed Galal	
Prof. of Soil Science, Faculty of Agricultu	ire
Ain Shams University	
Dr. El-Hassnaa Abo Gabal Mohamed	•••••
Prof. Emeritus of Soil Science, Faculty of	Agriculture
Ain Shams University	

Date of Examination: 26 /7/ 2011

WATER MANAGEMENT IN SANDY SOIL USING NEUTRON SCATTERING METHOD

By

KHOLOOD MAHMOUD MOHAMED

B.Sc. Agric. Sc. (General), Suez Canal University, 1992 M.Sc. Agric. Sc. (Soil Science), Ain Shams University, 2004

Under the supervision of:

Dr. El-Hassnaa Abo Gabal Mohamed

Prof. Emeritus of Soil Physics, Department of Soil Science Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Mohamed El-Sayed Galal

Prof. of Soil Physics, Department of Soil Science Faculty of Agriculture, Ain Shams University

Dr. Rushdy Wassif El-Gendy

Prof. Emeritus of Soil Physics, Department of Soils and Water Research, Nuclear Research Center, Atomic Energy Authority

ABSTRACT

Kholood Mahmoud Mohamed: Water Management in Sandy Soil Using Neutron Scattering Method. Unpublished Ph.D. Thesis, Department of Soil Science, Faculty of Agriculture, Ain Shams University, 2011.

This study was carried out during 2008/2009 at the Experimental Field of Soil and Water Research Department, Nuclear Research Center, Atomic Energy Authority, Inshas in a newly reclaimed sandy soil. The aims of this work are,

* determine soil moisture tension within the active root zone and

* detecting the behavior of soil moisture within the active root zoon by defines the total hydraulic potential within the soil profile to predict both of actual evapotranspiration and rate of moisture depletion

This work also is aimed to study soil water distribution under drip irrigation system.

* reducing water deep percolation under the active root depth.

This study included two factors, the first one is the irrigation intervals, and the second one is the application rate of organic manure.

Irrigation intervals were 5, 10 and 15 days, besides three application rates of organic manure (0 m^3 /fed, 20 m^3 /fed. and 30 m^3 /fed.) in -three replicates under drip irrigation system, Onion was used as an indicator plant.

Obtained data show, generally, that neutron scattering technique and soil moisture retention curve model helps more to study the water behavior in the soil profile.

Application of organic manure and irrigation to field capacity is a good way to minimize evapotranspiration and deep percolation, which was zero mm/day in the treated treatments.

The best irrigation interval for onion plant, in the studied soil, was 5 days with $30m^3$ /fad. An application rate of organic manure.

Parameter α of van **Genuchent's 1980** model was affected by the additions of organic manure, which was decreased by addition of organic manure decreased it. Data also showed that n parameter was decreased by addition of organic manure

Using surfer program is a good tool to describe the water distribution in two directions (vertical and horizontal) through soil profile. **Key words:** Neutron scattering meter, irrigation intervals, organic manure, drip irrigation, onion yield, WUE.

CONTENTS

Title	Page
List of Figures	i
List of Tables	i
1. Introduction	1
2. Review of Literature	3
2.1. Neutron Scattering Method	3
2.2. Sandy soils	5
2.3. Organic mater	7
2.4. Soil moisture retention curve	9
2.4.1. Methods of determining Soil Moisture Retention Curve	
(SMRC)	11
2.4.1.1. Laboratory Method	11
2.4.1.2. In situ Method	12
2.5. Water movement in soils	15
2.6. Active Root Depth ARD	16
2.7. Evapotranspiration	17
2.8. Soil Water Storage	19
2.9. Water requirement	19
2.10. Irrigation water use efficiency	20
2.11. Water Management	21
2.12. Irrigation scheduling	23
2.13. Drip irrigation system	26
2.14. Water distribution under drip irrigation system	27
2.15. Crop Description and Climate	28
2.17. Onion yield	30
3. Materials and Methods	31
3.1: The experimental Site	31
3.2. Animal manure treatments	31
3.3. Irrigation system	32
3.4. Irrigation intervals treatments	33

3.5. Irrigation scheduling and requirements	33
3.6. Experimental design and statistical analysis	33
3.7. Cultivated Crop	36
3.8. Fertilization program	36
3.9. Irrigation water use efficiency (IWUE)	36
3.10. Measurements and calculations	36
3.10.1. Emission uniformity (EU) of the drip irrigation system	36
3.10.2. Field calibration of neutron moisture meter	37
3.10.3. Matric and hydraulic potentials	39
310.3.1. Active root depth (ARD)	39
3.10.3.2 Soil water distribution in soil profile	40
3.10.3.3 Soil water distribution around the dripper	40
3.10.3.4. Direction of soil water	40
3.10.3.5. Actual evapotranspiration	41
3.10.3.6. Soil moisture retention curves	41
3.10.4. Physical and chemical properties	41
4. Results and Discussion	43
4.1 Effect of animal manure additions on neutron calibration curves	
(NCCs)	43
4.2. Effect of animal manure additions on soil moisture retention	
Curves	45
4.3. Effect of animal manure addition and irrigation water intervals on	
water use efficiency and the yield of onion	48
4.3.1. Yield	48
4.3.2. Irrigation water use efficiency (WUE)	53
4.4. Effect of animal manure addition and irrigation intervals	
treatments on Soil / Water/ Plant Relationship	54
4.4.1. Direction of Soil Water Movement	54
4.4.2. Soil Water Distribution	57
4.4.3. Direction of Soil Water Movement within the wet area around a	
dripper	63
4.4.3.1 Under control treatment	63

4.4.3.2 Under rate1 treatment	64
4.4.3.3 Under rate2 treatment	65
4.4.4. Soil Water distribution in two directions within the wet area	
around a dripper using contour lines	66
4.4.4.1. Under control treatment	66
4.4.4.2. Under rate 1 treatment	69
4.4.4.3. Under rate 2 treatment	71
4.4.5. Soil Water distribution as ratio from field capacity in two	
directions within the wet area around a dripper	72
4.4.5.1. Under control treatment	72
4.4.5.2. Under rate1 treatment	75
4.4.5.3. Under rate2 treatment	75
4.4.6. Actual Evapotranspiration at developing and late seasons as	
affected by animal manure additions and irrigation intervals	76
4.4.7. Soil moisture suction within active rooting zone as affected by	
irrigation intervals and rates of animal manure during	
development and late season stages	78
4.4.8. Rate of soil water deep percolation during developing and late	
seasons, as affected by irrigation intervals and rate of animal	
manure additions	79
4.4.9. Active root depth (ARD)	80
4.4.10. Effect of irrigation intervals on each of soil moisture	
Tension and onion yield	81
5. Summary	83
6. References	85
Arabic summary	

LIST of FIGURES

	Title	Page
Fig (1)	Sites of neutron access tube for neutron moisture meter around the dripper	34
Fig (2)	Illustration of the experiment design	35
Fig (3)	Neutron moisture meter 50-mCi Am-Be source	38
Fig (4)	Neutron calibration curves of at 30 cm depth of control,	
	Rate 1 and Rate 2 treatments	44
Fig (5)	soil moisture retention curves for the treated soil and	
	control	45
Fig (6)	Effect of animal manure and irrigation intervals on onion	
	yield under drip irrigation system	50
Fig (7)	Soil moisture suction and onion yield as affected by	
	irrigation interval treatments	52
Fig (8)	IWUE of onion as affected by animal manure management and irrigation intervals treatments through (2008/2009) season	54
Fig (9)	The relationship between hydraulic potential and soil depth	
Fig (10)	of the studied treatments under 5 day irrigation interval Soil water distribution within the soil profile in control treatment for 5 days irrigation interval of onion yield	56 59
Fig (11)	Horizontal and vertical direction of soil water movement	
	for control treatment, five days interval, along dripper line	
Fig(12)	and vertical direction on dripper line Water distribution under control treatment, after	64
1 ig (12)	irrigation, five days interval along dripper line and for perpendicular on dripper line	67
Fig (13)	Water distribution under control treatment, before irrigation, five days interval along dripper line and for	60
Fig (14)	Water distribution under rate 1treatment, after irrigation, five days interval along dripper line and for perpendicular on dripper line	68 69
	Water distribution under rate 1treatment, before irrigation,	
Fig (15)	five days interval along dripper line and for perpendicular	70

	on dripper line	
Fig (16)	Water distribution under rate 2 treatment, after irrigation,	
	five days interval along dripper line and for perpendicular	
	on dripper line	71
Fig (17)	Water distribution under rate 2 treatment, before irrigation,	
2 ()	five days interval along dripper line and for perpendicular	
	on dripper line	72
Fig (18)	control treatment after irrigation, five days interval along dripper line and perpendicular on dripper	
	line	73
Fig (19)	control treatment, before next irrigation for the five days interval along dripper line and perpendicular on dripper line	74
Fig (20)	Effect of irrigation intervals on actual evapotranspiration	
8(-)	(water consumptive use) through development stage	
	within soil rooting zone for the three treatments.	76
Fig (21)	Effect of irrigation intervals on actual evapotranspiration (water consumptive use) through late season stage within	, 0
	soil rooting zone for the three treatments	77
Fig (22)	Behavior of soil moisture suction within active rooting zone through the developing and late season stages as affected by irrigation intervals and rates of animal manure	
	additions	79
Fig (23)	Rate of water deep percolation rate through development stage as affected by irrigation intervals and rates of animal	00
T: (2.1)	Pate of water deep percolation rate through late season	80
Fig (24)	stage as affected by irrigation intervals and rates of animal manure additions	80
Fig (25)	Effect of irrigation intervals on of soil moisture tension within soil rooting zone and onion yield for three	00
	treatments	80

LIST of TABLES

	Title	Page
Table (1)	Some physical properties of investigated soil	31
Table (2)	Some physical properties of the used animal manure	32
Table (3)	Some chemical properties of investigated soil	32
Table (4)	Some chemical properties of animal manure (AM)	32
Table (5)	Regression equations of neutron calibration curves at	
Table (6)	different soil depths of the treatments under study Values of van Genuchen parameters as affected by soil	38
Table (7)	treatment Illustrates the IWUF values as affected by both of animal manufaction intervals	47 53
Table (8)	Values of soil hydraulic gradient and the direction of soil water movement in the soil profile	57
Table (9)	Values of soil moisture suction values within active rooting zone ARZ, hydraulic parameters and active rooting depth in different sites of wet area around a dripper for control treatment for 5 days	
Table (10)	interval. Values of soil moisture suction within active rooting depth, hydraulic parameters and active rooting depth in	60
Table (11)	Values of soil moisture suction within active rooting depth, hydraulic parameters and active rooting depth in	62
	different sites of wet area around a dripper for rate 2 treatment for 5 days interval	62
Table (12)	treatment and 5 days interval	65
Table (13)	The direction of soil water along and perpendicular the dripper under rate 1 treatment and 5 days interval	65
Table (14)	The active roots for water absorption under rate 2 treatment and 5 days interval	66
Table (15)	The direction of soil water along and perpendicular the dripper under rate 2 treatment and 5 days interval	66
Table (16)	Illustrate the values of Eta through development stage	77

Table (17)Illustrates the values of Eta through late season stage78

ACKNOWLEDGEMENT

The authoress wishes to express her sincere gratitude to Prof. Dr. **ElHassnaa Abo- Gabal Mohamed** Professor of Soil physics, Soils Dept. Faculty of Agric. Ain Shams Univ., for her supervision, valuable guidance and advice and continuous help during this work.

The authoress also and **Prof. Dr. Mohamed El-Sayed Galal** Professor of Soil physics, Soils Dept. Faculty of Agric. Ain Shams Univ., for his supervision, continuous help during this work.

The authoress also would like to express her deepest gratitude to Prof. Dr. **Rushdy wassif El-Gendy** Professor of Soil physics, Soils & water Dept., Nuclear Res. Center, Atomic Energy Authority for supervision, valuable advice.

Also deepest gratitude and appreciation to Prof. Dr. **Mohamed Abd El-Moniem Mohamed** Professor of Soil physics, Soils & water Dept., Nuclear Res. Center, Atomic Energy Authority for continuous help during this work.

Thanks are also for the head of Soil physics, Soils & water Dept., Nuclear Res. Center, Atomic Energy Authority for supporting equipments and apparatus and all colleagues in Soil Physics and Irrigation unit, Soil and Water Department, Nuclear Research Center, Atomic Energy Authority, for cooperation and help during the practical course of this work.

Special thanks are to my parents for their helping and encouragement.

1- INTRODUCTION

Efficient and effective irrigation management is aims to provide sufficient water to a growing crop avoiding both over irrigation and physiological water stress in the growing plants. Consequently saving irrigation water through improving water management.

In Egypt, under sandy soil conditions, Amelioration of these soils is a must to improve their productivity to meet the prominent aim of agricultural strategy in Egypt, i.e., the increase of land productivity and adding new areas for cultivation. The main problem of sandy soils is the high infiltration rate of water through their large pores and its low ability to retain water. Therefore, one of the improvement strategies is the use of animal manure, suitable water management and conservation practices.

Behavior of soil moisture, movement and its distribution within the soil profile were investigated using modern techniques such as neutron scattering technique, combination between neutron probe and soil moisture retention model. Using surfer computer program helped in studying the soil moisture distribution and its movement through soil profile.

These techniques were helpful tools to study the soil/water/plant relationship, such as, direction of soil water movement, estimate different rate of soil moisture in active root depth, and define active rooting depth., as well as, estimating water consumptive use and drainage rate, which leads to water saving and increases irrigation efficiency.

Onion crop (*Allium Cepa*) can be grown on many soils and under a wide range of climates from temperate to tropical. Present world production is about 46.7 million tons of bulbs from 2.7 million ha cited from **Dooernbos and Kassam (1979)**.

Onion is one of the most important vegetable crops in Egypt. It occupies the third cultivated area after tomato and potato, also its

importance lies in exportation and local consumption. However, such consumption reached about 12.5 Kg/person giving one million ton for Egypt **Ghoname et al (2007)**

Onion was selected for this study because it is sensitive to water deficit. For high yield, soil water depletion should not exceed 25 percent of available soil water. Frequent irrigation is required to prevent cracking of the bulb and forming of doubles. Also adequate water supply is essential for high quality crop. A good bulb yield under irrigation is 35 to 45 ton/ha. **Dooernbos and Kassam (1979).**

This current work was carried out at the area of Atomic Energy Authority, Inshas to study the role of adding two rates of animal manure for improving hydraulic properties of sandy soil under the conditions of using three different irrigation intervals with drip irrigation system using the neutron scattering technique. Moreover, the effect of these treatments on yield and water use efficiency of onion as an indicator plant.