Elevated Liver Enzymes as a Predictor for Development of Type 2 Diabetes Mellitus

Thesis

Submitted for Partial Fulfillment of Master Degree (M.Sc.) in Internal Medicine

> By Maysa Sayed Abdallah Abdeltawab (M.B., B.Ch.)

Supervised By

Prof. Dr. Mohamed Ibrahim Sheta

Professor of Internal Medicine Faculty of Medicine, Cairo University

Prof. Dr. Dawlat El-Sayed Ibrahim Salem

Professor of Medical Biochemistry Faculty of Medicine, Cairo University

Assis. Prof. Dr. Eman Ahmed Rushdy Assistant Professor of Internal Medicine Faculty of Medicine, Cairo University

> FACULTY OF MEDICINE CAIRO UNIVERSITY 2007

Acknowledgement

First I thank ``**God**'' for giving me the effort to complete this work

I am profoundly indebted to Prof. Dr. **Mohamed Ibrahim Sheta**, Professor of Internal Medicine, Faculty of Medicine, Cairo University, for his experience and kind supervision throughout the work. His untiring effort and guidance were most supportive and extremely helpful.

I am deeply grateful to Prof. Dr. **Dawlat EI-Sayed Salem**, Professor of Medical Biochemistry, Faculty of Medicine, Cairo University, who offered much of her time, experience and guidance through the practical part and rest of the work.

I also wish to express my great appreciation to Assis. Prof. Dr. **Eman Ahmed Rushdy**, Assistant Professor of Internal Medicine, Faculty of Medicine, Cairo University, for her valuable suggestions, assistance and encouragement during my work in this study.

Abstract

The aim of this study is to study the relation between elevated liver enzymes and type 2 diabetes mellitus and whether or not could be a predictor for development of type 2 diabetes. This study was conducted on 85 subjects divided into 4 groups, group (A) (control group) 17 subjects not obese, diabetic or had a history or laboratory evidence of liver disease, group (B) 28 subjects obese, not diabetics and had not liver disease, group (C) 20 subjects obese, not diabetic, but had elevated liver enzymes, group (D) 20 subjects obese, type 2 diabetics and had no history of liver disease. All the groups subjected to the following investigations, fasting and postprandial plasma glucose, fasting serum insulin, plasma lipid profile, plasma hepatic enzymes AST, ALT and GGT and abdominal ultrasonography. The present study demonstrated that there is an independent association hepatic between steatosis and both hyperinsulinemia and insulin resistance after adjustment for both BMI and W/H ratio. Non-diabetic NAFLD patients have a significant positive correlation between elevated AST, ALT and the level of fasting serum insulin, insulin resistance, serum triglyceride level and BMI and a significant negative correlation to high density lipoprotein cholesterol level. We demonstrated also that, there is a non-significant correlation between elevated GGT level and all the previous variables. Also, we demonstrated that patients who receive insulin sensitizers have a more improving lipid profile and a lower serum insulin level.

Key Words:

- Insulin resistance.
- Non-alcoholic fatty liver disease.
- Type 2 diabetes.
- Liver enzymes.

Dedicated to

Му

List of Abbreviations

ADP	: Adenosine diphosphate
AIR	: Acute insulin response
ALKP	: Alkaline phosphatase
ALT	: Alanine transaminase
AMPK	: AMP-activated protein kinase
AST	: Aspartate transaminase
ATP	: Adenosine triphosphate
AUC	: Area under the curve
β-cell	: Beta-cell
BG	: Blood glucose concentration
BMI	: Body mass index
CRP	: C-reactive protein
СТ	: Computed tomography
СҮР	: Cytochrome peroxidase
DM	: Diabetes mellitus
eNOS	: Endothelial nitric oxide synthase
FFAs	: Free fatty acids
FSIGTT	: Frequently sampled intravenous glucose tolerance test
GGT	: Gamma glutamyl transferase
GLUT-4	: Glucose transporter-4
8-hdG	: 8-hydroxy-2 deoxy-guanosine
HDL	: High density lipoprotein
HGO	: Human glucose output
НО	: Heme oxygenase
HOMA	: Homeostasis model assessment
HOMA-IR	: Homeostasis model assessment of insulin resistance
2HPPG	: Two-hours postprandial plasma glucose
IFG	: Impaired fasting glucose
IGT	: Impaired glucose tolerance
IL	: Interleukin
IMCL	: Intramyocellular lipid
iNOS	: Inducible nitric oxide synthase
IR	: Insulin resistance

IRI	: Immunoreactive insulin concentration
IRS	: Insulin receptor substrate
ISI	: Insulin sensitivity index
ITT	: Insulin tolerance test
LDL	: Low density lipoprotein
LCACoA	: Long chain acyl Co-A ester
LCPUFAs	: Long chain polyunsaturated fatty acids
MAP kinase	: Mitogen activated protein-kinase
MRI	: Magnatic resonance imaging
MTP	: Microsomal triglyceride transfere protein
NAFLD	: Non-alcoholic fatty liver disease
NASH	: Non-alcoholic steatohepatitis
NO	: Nitric oxide
OGIS	: Oral glucose insulin sensitivity
OGTT	: Oral glucose tolerance test
PCOS	: Polycystic ovary syndrome
PI3K	: Phosphatidylinositol-3-kinase
PPAR-γ	: Peroxisome proliferator-activated receptor-gamma
QUICKI	: Quantitative insulin sensitivity check index
RIA	: Radioimmunoassay
ROS	: Reactive oxygen species
SAHS	: San Antonio Heart Study
Si	: Insulin sensitivity index
SOCS	: Suppressors of cytokine signaling
SREBP	: Sterol regulatory element binding protein
SS	: Steady state
STAT	: Single transducer and activator of transcription
TG	: Triglyceride
TNF-α	: Tumour-necrosis factor-alpha
VLDL	: Very low density lipoprotein
WC	: Waist circumference

List of Figures

Fig.	Title	Page
1	Bar chart showing comparison between patients with fatty liver	
	and those without in group B	98
2	Linear regression curve showing positive correlation between	
	BMI and FSI in group B	99
3	Linear regression curve showing positive correlation between	
	BMI and HOMA-IR in group B	99
4	Linear regression curve showing positive correlation between	
	HOMA-IR and FPB in group B	100
5	Linear regression curve showing positive correlation between	
	HOMA-IR and PPBS in group B	100
6	Linear regression curve showing positive correlation between	
	HOMA-IR and AST in group C	104
7	Linear regression curve showing positive correlation between	
	HOMA-IR and ALT in group C	104
8	Linear regression curve showing positive correlation between	
	BMI and AST in group C	105
9	Linear regression curve showing positive correlation between	
	BMI and ALT in group C	105
10	Linear regression curve showing positive correlation between	
	TG and ALT in group C	106
11	Linear regression curve showing positive correlation between	
	TG and AST in group C	106
12	Bar chart showing comparison between patients receiving	
	sulphonylurea group D_1 and patients receiving metformin	
	group D ₂ regarding laboratory data	
13	Linear regression curve showing positive correlation between	
	HOMA-IR and TG in group D	111

Fig.	Title	Page
14	Bar chart showing comparison between group B and control	
	regarding weight, height, BMI and waist/hip ratio	112
15	Bar chart showing comparison between group B and control	
	regarding laboratory data	114
16	Bar chart showing comparison between group C and control	
	regarding weight, height, BMI and waist/hip ratio	115
17	Bar chart showing comparison between group C and control	
	regarding laboratory data	116
18	Bar chart showing comparison between group C and control	
	regarding weight, height, BMI and waist/hip ratio	119
19	Bar chart showing comparison between group B and group C	
	regarding laboratory data	120
20	Bar chart showing comparison between group C and group D	
	regarding laboratory data	124

List of Tables

Table	Title	Page
1	Advantages and disadvantages of different methods for the	
	quantitative assessment of IR	14
2	Criteria for the definition of the metabolic syndrome according	
	to the most commonly quoted proposals	26
3	Screening criteria for type 2 DM in asymptomatic	
	high-risk subjects	43
4	Diagnostic criteria for diagnosis of diabetes mellitus and other	
	categories of hyperglycemia (glucose concentration	
	mg/dL and mmol/L)	45
5	Establishing the diagnosis of NASH	57
6	Clinical and Laboratory Data of Group (A)	88
7	Clinical and Laboratory Data of Group (B)	89
8	Clinical and Laboratory Data of Group (C)	91
9	Clinical and laboratory data of group (D ₁)	
	treated with sulphonylurea	92
10	Clinical and laboratory data of group (D_2) treated with metformin	93
11	Laboratory tests in group A	94
12	Laboratory tests in group B	96
13	Comparison between patients with fatty liver and	
	those without in group B	97
14	Laboratory tests in group C	101
15	Correlation matrix between variables in group C	102
16	Laboratory tests in group D	108
17	Comparison between patients receiving sulphonylurea (D_l) and	
	patients receiving metformin (D ₂) regarding laboratory data	109
18	Comparison between group B and control regarding weight,	
	height, BMI and waist/hip ratio	112

Table	Title	Page
19	Comparison between group B and control regarding	
	laboratory data	113
20	Comparison between group C and control regarding weight,	
	height, BMI and waist/hip ratio	115
21	Comparison between group C and control regarding	
	laboratory data	116
22	Comparison between group D and control regarding weight,	
	height, BMI and waist/hip ratio	117
23	Comparison between group D and control	
	regarding laboratory data	118
24	Comparison between group B and C regarding weight, height,	
	BMI and waist/hip ratio	118
25	Comparison between group B and C regarding laboratory data	120
26	Comparison between group B and group D regarding weight,	
	height, BMI and waist/hip ratio	121
27	Comparison between group B and D regarding laboratory data	122
28	Comparison between group C and D regarding weight, height,	
	BMI and waist/hip ratio	122
29	Comparison between group C and D regarding laboratory data	123

Contents

	Page
Acknowledgement	
Abstract	
List of Abbreviations	
List of Figures	
List of Tables	
Introduction and Aim of the Work	1
Review of Literature:	
 Insulin Resistance 	5
Metabolic Syndrome	24
 Type 2 Diabetes Mellitus 	37
 Non-Alcoholic Fatty Liver Disease (NAFLD) 	54
 Elevated Liver Enzymes and Risk of Type 2 Diabetes Mellitus 	72
Subjects and Methods	82
Results	87
Discussion	126
Summary	150
Conclusion	155
Recommendation	157
References	158
Arabic Summary	

Introduction and Aim of the Work

INTRODUCTION

1

Type 2 diabetes is the condition most obviously linked to insulin resistance. Compensatory hyperinsulinemia helps to maintain euglycemia-often for decades before overt diabetes develops. Eventually, the B-cells of the pancreas are unable to overcome insulin resistance through hypersecretion. Glucose level rise and diagnosis of diabetes can be made (**Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus, 2001**).

The only way that insulin-resistant persons can prevent the development of type 2 diabetes is by secreting the increased amount of insulin that is necessary to compensate for the resistance to insulin action. The greater the magnitude of muscle and adipose tissue insulin resistance, the more insulin must be secreted to maintain normal or near-normal glucose tolerance. Although compensatory hyperinsulinemia may prevent the development of fasting hyperglycemia in insulin-resistant individuals, the price paid is the untoward physiologic effects of increased circulating insulin concentrations on tissues that retain normal insulin sensitivity (Reaven, 2005).

Metabolic syndrome has been coined to indicate a cluster of diseases, strictly correlated with each other, having insulin resistance

and carrying a high risk of cardiovascular disease (**Hu et al., 2004**). It includes insulin resistance and compensatory hyperinsulinemia, glucose intolerance, hypertension, and dyslipidemia. Several other components have subsequently been added, including obesity and especially abdominal obesity, microalbuminuria, abnormalities in fibrinolysis and coagulation and the presence of small dense atherogenic LDL particles (**Goutham, 2001**). Multiple authors have proposed that hepatic steatosis and non-alcoholic steatohepatitis (NASH) are included as clinical features in the metabolic disorders of insulin resistance (**Pagano et al., 2002**).

Type 2 diabetes is frequently observed in association with fatty liver. At autopsy, liver fat is found in about one third of non-obese type 2 diabetics. As a group, patients who have fatty liver-as indicated by ultrasonographic scan-are more likely to exhibit glucose intolerance and elevated baseline insulin levels than those with normal livers (Neuschwander-Tetri, 2001).

Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease observed in the clinical practice of hepatology. The coexistence of metabolic syndrome in these cohort of patients has made insulin resistance central to the pathogenesis of these disorders. The subsequent fate of steatotic hepatocytes depends on the capacity of additional factors such as adipocytokines to induce inflammatory response. This latter process is responsible for producing the phenotype of non-alcoholic steatohepatitis (NASH). Irrespective of the process by which this phenotypic response occurs, it is now universally accepted that in the absence of insulin resistance the spectrum of changes associated with (NAFLD) does not develop (**Choudhury and Sanyal**, **2005**).

3

It is of interest to determine the role of NAFLD in the early stages of the etiology of metabolic syndrome and prospective association with the development of type 2 diabetes (**Nakanishi et al., 2004**). However, direct measurements of liver fat require ultrasound, CT scan or proton spectroscopy (**Liangpunsakul et al., 2005**) and assessment of liver biopsy is important in the diagnosis and management of NALFD (**Hubscer, 2004**), such techniques are unlikely to be recommended for this purpose in routine clinical practice (**Liangpunsakul et al., 2005**).

Fortunately, circulating concentrations of a number of variables appear to give insight into the extent of liver fat accumulation. Among these are GGT, ALT and AST, of these three, ALT is the most specific marker of liver pathology and appears to be the best marker for liver fat accumulation (**Tükkainen et al., 2003**). NASH patients typically have serum aminotransferase levels that range from normal to 5 folds the upper limit of normal. In the absence of cirrhosis, patients with NASH almost invariably have ALT levels that are greater than AST levels (**Sorbi et al., 1999**).