

Ain Shams University Faculty of Science Department of Biochemistry

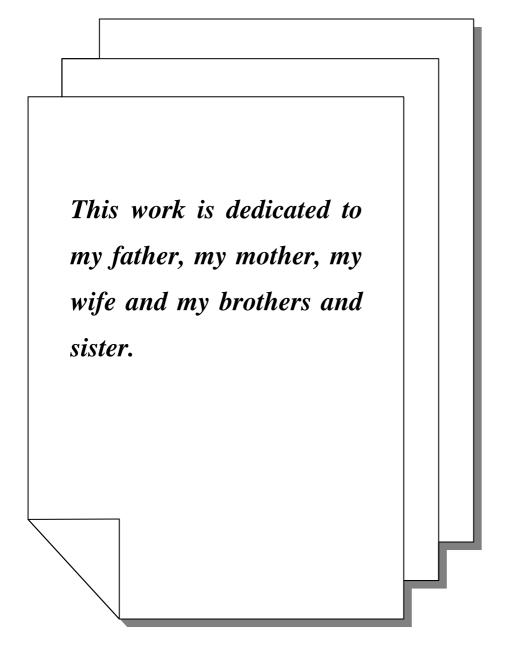
Biochemical Study of Antitumor Activity of Resveratrol in Combination with Selenium in Ehrlich Ascites Carcinoma Bearing and/or Irradiated Mice

A Thesis

Submitted in partial fulfillment of the requirements of the degree of

Master of Science in Biochemistry

Mahmoud Mohamed Refaat Abd Elfattah


Under Supervision of

Prof. Dr. Mohamed Ragaa Mohamed Professor of Biochemistry and Molecular Biology Faculty of Science Ain Shams University

Prof. Dr.

Soheir Abdel Azeem Osman Professor of Biochemistry-National Center of Radiation Research and Technology (NCRRT) Atomic Energy Authority (A.E.A)

(2016)

Declaration

I declare that this thesis has been composed by myself and that the work of which it is a record has been done by myself. This thesis has not been submitted for a degree at this or any other university.

Mahmoud Mohamed Refaat

Ain Shams University Faculty of Science Department of Biochemistry

BIOGRAPHY

Name	: Mahmoud Mohamed Refaat Abd Elfattah
Date of Graduation	: 2005, Faculty of Science, Entomology/Biochemistry Department, Ain Shams University
Grade	: M.Sc. in Biochemistry
Occupation	: Specialist at Radiation Biology Research Department, National Centre For Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), Cairo, Egypt.

ACKNOWLEDGEMENT

Thanks are due first and last to Almighty GOD as I deeply owe HIM mercy, support and guidance in my whole life.

My deep gratefulness and special thanks to **Prof. Dr.** Mohamed Ragaa Mohamed, Professor of Biochemistry and Molecular Biology, Biochemistry Department, Faculty of Science, Ain Shams University, for his endless help, guidance, continuous encouragement, valuable advice and critism. It is great honor for me to work under his supervision throughout my postgraduate carrier

It is really difficult for me to find words that can express my deep feelings, heartfull gratitude towards **Prof. Dr. Sohier A. Osman,** Professor of Biochemistry, Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), for her creative thinking , instructive guidance, valuable suggestion, illuminating advice and whole hearted support, supervision, kind encouragement, her fruitful reading, reviewing constructive criticizing of the manuscript and kind offer of all possible laboratory facilities to accomplish the practical part of this study. Words are also inadequate to express my deepest gratitude to **Dr. Neama Mohamed El-Fatih,** Assist. Prof. of Biochemistry, Radiation Biology Department, NCRRT, valuable advice, review the manuscript, unlimited help, kind encouragement, without her tremendous concern and care the performance of this work would be difficult.

It is really difficult for me to find words that can express my deep gratitude and sincere appreciation towards **Dr**. **Asmaa Abu Bakr EL-seddik**, Lecturer of Biochemistry and **Dr. Sherien Abd El-wahab**, Lecturer of Biochemistry, Radiation Biology Department, NCRRT for their creative thinking, valuable suggestions.

I wish to express my warm thanks to **Dr. Marwa Hasanin El-sayed Ali,** Assist. Lecturer of Cell Biology, Genetics and Histochemistry, Faculty of Science, Zagazig University.

Much thanks to all staff members and colleagues in the lab of Biochemistry, Radiation Biology Department and head of Radiation Biology Department, NCRRT, for their help and cooperation.

LIST OF CONTENTS

Contents	Page
ACKNOWLEDGEMENT	i
LIST OF ABBREVIATIONS	
LIST OF TABLES	
LIST OF FIGURES	ix
ABSTRACT	1
Chapter (I). Introduction and Aim of The Work	3
INTRODUCTION	
AIM OF THE WORK	7
Chapter (II). REVIEW OF LITERATURE	9
Types of tumor	10
Ehrlich ascites carcinoma (EAC)	11
Tumor angiogenesis	12
The mechanism of angiogenesis	13
The extracellular matrix	14
Regulation of angiogenesis	
Positive angiogenic regulators	17
Negative angiogenic regulators	18
Metalloproteinases	19
Structures of the MMPs	19
Classification of metalloproteinases	20

Gelatinases	23	
Matrix metalloproteinase-2	23	
Matrix metalloproteinase-9	24	
Tumor necrosis factor alpha	26	
Lactate dehydrogenase	26	
Resveratrol	30	
Structure and properities of resveratrol	31	
Toxicity of resveratrol	36	
Selenium	37	
Chemical forms of selenium and their metabolism	39	
Radiation	42	
Non ionizing radiation	42	
Ionizing radiation		
Effect of ionizing radiation on biological systems		
Free radicals and reactive oxygen species		
Lipid peroxidation	44	
Counteraction of oxidative stress by natural antioxidants	45	
The antioxidants remove ROS through different	46	
scavenging categories	40	
Superoxide dismutase (SOD)	46	
Catalase (CAT)	47	
Glutathione (GSH)	49	
Chapter (III). MATERIALS & METHODS		

I-MATERIALS	
Experimental animals	53
Radiation process (Ionizing radiation source)	53
Tumor transplantation	54
Treatments	54
Reagents	54
Experimental design	55
Samples collection and preparation	58
Blood samples	59
Tissue samples	59
II-METHODS	59
(1)- Measurement of tumor size (mm ³)	59
(I)- In vitro study	
(2)- Determination of cell proliferation and viability	
(MTT assay)	
(II)- In vivo study	62
(3)-Determination of total proteins in serum (µg/ml)	02
(4)-Determination of matrix metalloproteinases in	63
Serum (U/mg protein)	03
(5)-Determination of serum tumor necrosis factor –	70
alpha by enzyme-linked immunosorbent assay (pg/ml)	
(6)-Determination of lactate dehydrogenase (µmol/L/	74
min)	/ 4

(7)-Determination of thiobarbituric acid reactive substances level (nmol/g tissue)	76
(8)-Determination of superoxide dismutase activity (μmol/min/g tissue)	78
(9)-Determination of catalase activity (μmoles consumed H ₂ O ₂ /min/mg tissue)	81
(10)-Determination of reduced glutathione content (mg GSH/ g fresh tissue)	83
Histopathological preparation	85
Instruments used in the practical part	86
Statistical Analysis	86
Chapter (IV).RESULTS	87
Chapter (V).DISCUSSION	138
Chapter (VI).SUMMARY&CONCLUSIONS	154
Chapter (VII). REFERENCES	159
ARABIC SUMMARY	
ARABIC ABSTRACT	

LIST OF ABBREVIATIONS

BAX	Bcl-2-associated X protein
BCL-2	B-cell lymphoma 2
bFGF	Basic fibroblast growth factors
BSA	Bovine serum albumin
САТ	Catalase
CBD	Collagen binding domain
CD4+	Cluster of differentiation 4
CD59	Complement fragment
CD8+	Cluster of differentiation 8
CSFs	Colony-stimulating factors
DMSO	Dimethyl sulphoxide
DTNB	5, 5`-dithiobis(2-nitrobenzoic acid)
DTPA	Diethylene tri-aminopenta acetic acid
EAC	Ehrlich ascites carcinoma
EAT	Ehrlich Ascites Tumor
ECM	Extracellular matrix
EGF	Epidermal growth factor
ELISA	Enzyme - linked immunosorbent assay
G-CSF	Granulocyte colony-stimulating factor
GPI	glycosylphosphatidyl- inositol anchor
GSH	Glutathione, reduced form
GSH-Px	Glutathione peroxidase
GSSeSG	Selenodiglutathione
GSSG	Glutathione disulfide(oxidized form)
Gy	Gray