Diagnosis of Campylobacter Infection
In Cases With Diarrhea

Thesis
Submitted for Partial Fulfillment of M.Sc. Degree
in Clinical and Chemical Pathology

By

Marwa Ali Ahmed Badwi
M.B., B.Ch.
Faculty of Medicine - Ain Shams University

Supervised by

Professor / Nevine Nabil Kassem
Professor of Clinical and Chemical Pathology,
Faculty of Medicine - Ain Shams University

Doctor / Samia Abdou Girgis
Assistant Professor of Clinical and Chemical Pathology,
Faculty of Medicine - Ain Shams University

Doctor / Samar Saad Rashad
Lecturer of Clinical and Chemical Pathology,
Faculty of Medicine - Ain Shams University

Faculty of Medicine,
Ain-Shams University
2011
تشخيص عدوى الكامبيلوكتر في مرضى الإسهال

رسالة
توطنة للحصول على درجة الماجستير في الباثولوجيا الإكلينيكية والكيميائية

مقدمة من الطبيبة/مروة علي أحمد بدوى
بكالوريوس الطب و الجراحة
كلية الطب - جامعة عين شمس

تحت إشراف
الأستاذ الدكتور / نيفين نبيل قاسم
أستاذ الباثولوجيا الإكلينيكية و الكيميائية
كلية الطب - جامعة عين شمس

الدكتور/ سامية عبد جربس
أستاذ مساعد الباثولوجيا الإكلينيكية و الكيميائية
كلية الطب - جامعة عين شمس

الدكتور / سمر سعد شاذ
مدرس الباثولوجيا الإكلينيكية و الكيميائية
كلية الطب - جامعة عين شمس

كلية الطب
جامعة عين شمس
2011
Summary and conclusion

Campylobacter (curved rod in Greek) may have been first discovered in the late nineteenth century (1886) by Theodor Escheric who observed it in the colon of infants who died of a disease, he named “cholera infantum” (Bhunia, 2008). Currently, of the 19 Campylobacter species/subspecies that have been classified, 10 or 11 have well-established associations with animal or human diseases (Gilbreath et al., 2011).

Campylobacter is a major food borne pathogen of animal origin, prominently associated with poultry and is responsible for a significant percentage of intestinal infectious diseases in human in the developed world and in developing countries. It is associated mainly with illness in children. In industrialized countries, sporadic cases of human infection are generally attributed to the consumption of raw or undercooked poultry meat whereas outbreaks have been traced to contamination of the water supply and the consumption of contaminated raw milk (Peterson, 2003 and Jeon et al., 2010).

The incidence of human campylobacteriosis increased exponentially during the last decade of the 20th century, although part of this increase can be attributed to better
detection of Campylobacter and better diagnosis (Smith and Bayles, 2006).

Campylobacteriosis is a self-limited disease and antimicrobial therapy is not generally indicated. However, treatment can reduce the duration and the severity of illness if it is initiated early in the course of infection (Coker et al., 2002 and Adekunle et al., 2009).

Campylobacter infection represents a significant and persistent public health problem, with approximately 10% of cases requiring hospital treatment. Sequelae that may accompany illness, such as reactive arthritis, toxic megacolon and autoimmune-mediated demyelinating neuropathies (e.g Guillain-Barré and Miller Fisher syndromes) have been added to the disease burden (Gillespie et al., 2006).

Because poultry, livestock, pets, and wild animals are the major reservoir for Campylobacter, control is based on interruption of transmission to humans from animals, animal products, or environmental sources contaminated by animals (Humprey and Jørgensen, 2006).

The identification of Campylobacter using conventional methods is slow (culture-based methods can take up to five days) and problematic due to their fastidious growth requirements and biochemical inertness. Moreover, the detection of C. coli and/or C. jejuni in complex substrates like
faeces or environmental samples is difficult as the culture conditions have to be selective enough to avoid overgrowth from competing organisms. PCR has provided a reliable tool to detect and to quantify C. jejuni and/or C. coli in pure culture, in poultry, milk, or water, and in complex substrates like food products and faecal samples (Maridor et al., 2011).

A number of simple and rapid identification and discrimination methods based on the PCR have been developed for thermophilic campylobacters on the basis of genetic diversity. Alternatively, multiplex PCR for targeting several species-specific genes have also been developed (Persson and Olsen, 2005).

Accurate identification of Campylobacter species, particularly C. jejuni, C. coli and C. fetus, provides important data for diagnosis and proper treatment, drug of choice for severe Campylobacter infection, epidemiologic surveillance and risk assessment studies (Asakura et al., 2008).

In the current study, 50 stool samples were collected from patients suffering from diarrhea with fever, headache, abdominal pain, myalgia, vomiting and/or blood in stool. The samples were subjected to Physical examination, microscopic examination, and culture on Skirrow’s media with phenotyping by Hippurate test in addition to genotyping by PCR technique.
In the present study, Campylobacter was isolated on Skirrow's media from 6/50 (12%) stool samples obtained from patients with sensitivity, specificity, PPV and NPV of 100%. The 4/6 samples were identified as Campylobacter jejuni (Hippurate test +ve). The PCR confirmed the 6 positive samples as Campylobacter. Also, PCR identified the 4/6 Hippurate +ve test as C. jejuni and 2/6 Hippurate –ve test were identified as C. coli with sensitivity, specificity, PPV and NPV of 100%.

Our results revealed a highly significant association between the results of the Skirrow’s media and PCR (P<0.001); also between all the risk factors and positive stool culture cases for Campylobacter (2 C. jejuni associated with type of food and 1 C. coli associated with contact with birds). A highly significant association between Campylobacter positive cases with fever (4/5 cases were due to C. jejuni) was found. Stool WBC ≥ 50 was significantly associated with stool culture positive cases.
List of Contents

<table>
<thead>
<tr>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of figures</td>
<td>I</td>
</tr>
<tr>
<td>List of tables</td>
<td>III</td>
</tr>
<tr>
<td>List of abbreviations</td>
<td>V</td>
</tr>
<tr>
<td>Introduction and aim of the work</td>
<td>1</td>
</tr>
<tr>
<td>Review of Literature</td>
<td></td>
</tr>
<tr>
<td>Chapter 1: Historical Overview</td>
<td>4</td>
</tr>
<tr>
<td>Chapter 2: Classification of Campylobacter species and related taxa</td>
<td>7</td>
</tr>
<tr>
<td>Chapter 3: Epidemiology</td>
<td>18</td>
</tr>
<tr>
<td>Chapter 4: Pathogenesis of Campylobacter</td>
<td>33</td>
</tr>
<tr>
<td>Chapter 5: Clinical significance of Campylobacter</td>
<td>48</td>
</tr>
<tr>
<td>Chapter 6: Laboratory diagnosis of Campylobacter infection</td>
<td>59</td>
</tr>
<tr>
<td>Chapter 7: Treatment & Antimicrobial Susceptibility</td>
<td>86</td>
</tr>
<tr>
<td>Chapter 8: Control and Prevention</td>
<td>98</td>
</tr>
<tr>
<td>Materials and Methods</td>
<td>105</td>
</tr>
<tr>
<td>Results</td>
<td>124</td>
</tr>
<tr>
<td>Discussion</td>
<td>138</td>
</tr>
<tr>
<td>Summary</td>
<td>145</td>
</tr>
<tr>
<td>Recommendations</td>
<td>149</td>
</tr>
<tr>
<td>References</td>
<td>151</td>
</tr>
<tr>
<td>Arabic Summary</td>
<td>___</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sources of Campylobacter infection</td>
<td>21</td>
</tr>
<tr>
<td>2</td>
<td>The total number of Campylobacter cases in the European Union until 2003</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>Mechanism of Campylobacter pathogenesis in the intestine</td>
<td>36</td>
</tr>
<tr>
<td>4</td>
<td>The structure and function of Cytolethal distending toxin (CDT)</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>The glycosylation of flagellar and periplasmic proteins</td>
<td>46</td>
</tr>
<tr>
<td>6</td>
<td>Morphology of Campylobacter</td>
<td>62</td>
</tr>
<tr>
<td>7</td>
<td>A membrane filtration technique</td>
<td>67</td>
</tr>
<tr>
<td>8</td>
<td>Practical algorithm for identifying campylobacter spp.</td>
<td>72</td>
</tr>
<tr>
<td>9</td>
<td>Mechanisms associated with Campylobacter resistance to macrolide and fluoroquinolone antibiotics</td>
<td>92</td>
</tr>
<tr>
<td>10</td>
<td>Sodium hippurate hydrate test</td>
<td>117</td>
</tr>
<tr>
<td>11</td>
<td>PCR detection of lpxA gene</td>
<td>121</td>
</tr>
<tr>
<td>12</td>
<td>Morphology of Campylobacter colonies</td>
<td>125</td>
</tr>
<tr>
<td>13</td>
<td>Gram stained film shows Campylobacter morphology</td>
<td>126</td>
</tr>
</tbody>
</table>
14 Types of the identified Campylobacter species .. 127
15 The frequency of the associated symptoms of the 50 studied cases .. 129
16 Association of accompanied symptoms with stool culture positive and negative cases 131
17 ROC (Reciever operator characterisic) curve for stool WBC as a test for Campylobacter Infection (Considering stool culture as a golden test) 132
18 Association of sampling time with stool culture positive and negative cases. IQR: Interquartile range ... 134
List of Tables

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Host association of Campylobacter species and pathogenesis to humans.</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>Selective media for isolation of Campylobacter</td>
<td>69</td>
</tr>
<tr>
<td>3</td>
<td>Biochemical properties of Campylobacter species</td>
<td>76</td>
</tr>
<tr>
<td>4</td>
<td>Ingredients of the master mix</td>
<td>112</td>
</tr>
<tr>
<td>5</td>
<td>Diagnostic performance of Skirrow’s media</td>
<td>127</td>
</tr>
<tr>
<td>6</td>
<td>Association of risk factors for diarrhea with stool culture positive and negative cases</td>
<td>128</td>
</tr>
<tr>
<td>7</td>
<td>Association of accompanied symptoms with stool culture positive and negative cases</td>
<td>130</td>
</tr>
<tr>
<td>8</td>
<td>Value of stool WBC as a test for Campylobacter Infection</td>
<td>131</td>
</tr>
<tr>
<td>9</td>
<td>Association of stool WBC with stool culture positive and negative cases</td>
<td>133</td>
</tr>
<tr>
<td>10</td>
<td>Characteristics of stool WBC \geq 50 as a test for Campylobacter Infection</td>
<td>133</td>
</tr>
<tr>
<td>11</td>
<td>Association of stool characteristics with stool culture positive and negative cases</td>
<td>135</td>
</tr>
<tr>
<td>12</td>
<td>Comparison between stool culture positive and</td>
<td>135</td>
</tr>
</tbody>
</table>
negative cases as regards age and sex

13 Association of immunity impairing medical condition with stool culture positive and negative cases .. 136

14 Association of onset and course of the diarrhea with stool culture positive and negative cases 137
List of Abbreviations

AFLP Amplified fragment length polymorphism
AIDP Acute inflammatory demyelinating polyneuropathy
AIDS Acquired Immune Deficiency Syndrome
AMAN Acute motor axonal neuropathy
AMSAN Acute motor-sensory axonal neuropathy
ATP Adenosine triphosphate
BAPs Blood agar plates
C. Campylobacter
CA Campylobacter agar
CAMPs Cationic antimicrobial peptides
cAMP cyclic adenosine monophosphate
Campylobacter spp. Campylobacter species
CAT medium Cefoperazone, Amphotericin B, and Teicoplanin medium
CCDA Charcoal cefoperazone deoxycholate agar medium
CDC Center for Disease Control and Prevention
CDT Cytolethal distending toxin
CFU Colony forming unit
Cia Campylobacter invasion antigens
CLSI Clinical and Laboratory Standards Institute
CPS Capsular polysaccharide
CSM Charcoal-based selective medium
ECM Extracellular matrix
Fn Fibronectin
GBS Guillain–Barré Syndrome

\"
HIV................. Human Immunodeficiency Virus
HL antigens..... Heat labile antigens
HSP Heat-shock proteins
IAH................ Indoxyl acetate hydrolysis
LOS................ Lipooligosaccharide
LPS................ Lipopolysaccharide
MAMA Mismatch amplification mutation assay
mCCDA.......... Modified charcoal cefoperazone deoxycholate agar
MIC Minimum inhibitory concentration
MLSB Macrolide lincosamide and streptogramin B
MLST Multilocus sequence typing
MSCRAMMs........ Microbial surface components recognizing adhesive matrix molecules
PCR Polymerase chain reaction
PFGE.............. Pulsed field gel electrophoresis
pgl............... Protein glycans
PMN Polymorphonuclear leukocytes
QRDR.............. Quinolone resistance-determining region
RFLP Restriction fragment length polymorphism
T3SS.............. Type III secretion system
TMAO............... Trimethylamine oxide
TSI................ Triple sugar iron agar
US.................. United States
V fetus Vibrio fetus
INTRODUCTION

Campylobacter is widely acknowledged as one of the most frequent pathogens causing acute bacterial gastroenteritis worldwide. Campylobacter jejuni and Campylobacter coli are the predominant cause of Campylobacteriosis. Furthermore, Campylobacter fetus, Campylobacter lari and Campylobacter upsaliensis have also been recognized as human pathogens causing gastroenteritis and/or septicemia (Matsum et al., 2007).

Campylobacter jejuni (C. jejuni) causes an acute diarrheal disease with a variety of clinical symptoms, such as fever, diarrhea, headache, abdominal pain, myalgia, vomiting, and blood in stool (Haddad et al., 2009).

Campylobacter infection represents a significant and persistent public health problem, with approximately 10% of cases requiring hospital treatment. Sequelae that may accompany illness, such as reactive arthritis, toxic megacolon and autoimmune-mediated demyelinating neuropathies (e.g. Guillain-Barré and Miller Fisher syndromes) have been added to the disease burden (Gillespie et al., 2006). This has emphasized the need for more rapid and efficient detection methodologies than the slow and complicated process of detecting Campylobacter by culture-based techniques (Olsen et al., 2009).
Conventional diagnostic methods utilizing a combination of culture and biochemical testing require that suspected stool specimens are cultured on selective agar at 42°C under microaerophilic conditions for up to 72 hours before a negative report is issued (Al Amri et al., 2007).

A number of phenotypic and molecular typing methods are used to identify outbreak–associated Campylobacter strains in specific food-borne or waterborne outbreaks (Forbes et al., 2009). The ability to distinguish between Campylobacter species is important in the identification of Campylobacter sources and transmission routes. The PCR assays that distinguish between one or more combinations of the thermotolerant Campylobacter species have been described (Klena et al., 2004).

Erythromycin was the first macrolide to treat Campylobacter infections and it remains the treatment of choice for patients with uncomplicated enteritis in many countries. Also tetracycline was used for many years for treatment of humans infected with C.jejuni and C.col (Gu et al., 2009).

The resistance of C. jejuni to a range of antibiotics is common throughout the world and is thought to have been driven by the frequent use of antibiotics in animals farmed for meat. The genetic basis for antimicrobial drug resistance is known, and its spread by recombination has been demonstrated both within C. jejuni and between related species (Wilson et al., 2009).